2024届广东省佛山一中、珠海一中、金山中学数学高一下期末教学质量检测试题含解析_第1页
2024届广东省佛山一中、珠海一中、金山中学数学高一下期末教学质量检测试题含解析_第2页
2024届广东省佛山一中、珠海一中、金山中学数学高一下期末教学质量检测试题含解析_第3页
2024届广东省佛山一中、珠海一中、金山中学数学高一下期末教学质量检测试题含解析_第4页
2024届广东省佛山一中、珠海一中、金山中学数学高一下期末教学质量检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省佛山一中、珠海一中、金山中学数学高一下期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知锐角中,角所对的边分别为,若,则的取值范围是()A. B. C. D.2.已知水平放置的是按“斜二测画法”得到如图所示的直观图,其中,,那么原中的大小是().A. B. C. D.3.在数列an中,an+1=an+a(n∈N*,a为常数),若平面上的三个不共线的非零向量OA、OB、OC满足OC=a1A.1005 B.1006 C.2010 D.20124.下列叙述中,不能称为算法的是()A.植树需要运苗、挖坑、栽苗、浇水这些步骤B.按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…,99+1=100C.从济南到北京旅游,先坐火车,再坐飞机抵达D.3x>x+15..设、是关于x的方程的两个不相等的实数根,那么过两点,的直线与圆的位置关系是()A.相离. B.相切. C.相交. D.随m的变化而变化.6.已知,则的值等于()A. B. C. D.7.已知直线3x−y+1=0的倾斜角为α,则A. B.C.− D.8.某协会有200名会员,现要从中抽取40名会员作样本,采用系统抽样法等间距抽取样本,将全体会员随机按1~200编号,并按编号顺序平均分为40组(1-5号,6-10号,…,196-200号).若第5组抽出的号码为22,则第1组至第3组抽出的号码依次是()A.3,8,13 B.2,7,12 C.3,9,15 D.2,6,129.若、、为实数,则下列命题正确的是()A.若,则 B.若,则C.若,则 D.若,则10.某程序框图如图所示,该程序运行后输出的值是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在我国古代数学著作《孙子算经》中,卷下第二十六题是:今有物,不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?满足题意的答案可以用数列表示,该数列的通项公式可以表示为________12.计算:________.13.设满足约束条件,则的最小值为__________.14.已知,,,,则________.15.已知二面角为60°,动点P、Q分别在面、内,P到的距离为,Q到的距离为,则P、Q两点之间距离的最小值为.16.已知在中,角的大小依次成等差数列,最大边和最小边的长是方程的两实根,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在平面直角坐标系中,单位圆上存在两点,满足均与轴垂直,设与的面积之和记为.若,求的值;若对任意的,存在,使得成立,且实数使得数列为递增数列,其中求实数的取值范围.18.等差数列中,,.(1)求通项公式;(2)若,求的最小值.19.如图是一景区的截面图,是可以行走的斜坡,已知百米,是没有人行路(不能攀登)的斜坡,是斜坡上的一段陡峭的山崖.假设你(看做一点)在斜坡上,身上只携带着量角器(可以测量以你为顶点的角).(1)请你设计一个通过测量角可以计算出斜坡的长的方案,用字母表示所测量的角,计算出的长,并化简;(2)设百米,百米,,,求山崖的长.(精确到米)20.如图,三棱柱,底面,且为正三角形,,,为中点.(1)求证:直线平面;(2)求二面角的大小.21.数列满足,.(1)试求出,,;(2)猜想数列的通项公式并用数学归纳法证明.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

利用余弦定理化简后可得,再利用正弦定理把边角关系化为角的三角函数的关系式,从而得到,因此,结合的范围可得所求的取值范围.【题目详解】,因为为锐角三角形,所以,,,故,选B.【题目点拨】在解三角形中,如果题设条件是关于边的二次形式,我们可以利用余弦定理化简该条件,如果题设条件是关于边的齐次式或是关于内角正弦的齐次式,那么我们可以利用正弦定理化简该条件,如果题设条件是边和角的混合关系式,那么我们也可把这种关系式转化为角的关系式或边的关系式.2、C【解题分析】

根据斜二测画法还原在直角坐标系的图形,进而分析出的形状,可得结论.【题目详解】如图:根据斜二测画法可得:,故原是一个等边三角形故选【题目点拨】本题是一道判定三角形形状的题目,主要考查了平面图形的直观图,考查了数形结合的思想3、A【解题分析】

利用等差数列的定义可知数列an为等差数列,由向量中三点共线的结论得出a1+【题目详解】∵an+1=an∵三点A、B、C共线且该直线不过O点,OC=a1因此,S2010故选:A.【题目点拨】本题考查等差数列求和,涉及等差数列的定义以及向量中三点共线结论的应用,考查计算能力,属于中等题.4、D【解题分析】

利用算法的定义来分析判断各选项的正确与否,即可求解,得到答案.【题目详解】由算法的定义可知,算法、程序是完成一件事情的可操作的步骤:可得A、B、C为算法,D没有明确的规则和步骤,所以不是算法,故选D.【题目点拨】本题主要考查了算法的概念,其中解答的关键是理解算法的概念,由概念作出正确的判断,着重考查了分析问题和解答问题的能力,属于基础题.5、D【解题分析】直线AB的方程为.即,所以直线AB的方程为,因为,所以,所以,所以直线AB与圆可能相交,也可能相切,也可能相离.6、D【解题分析】,所以,则,故选择D.7、A【解题分析】

由题意利用直线的倾斜角和斜率求出tanα的值,再利用三角恒等变换,求出要求式子的值.【题目详解】直线3x-y+1=0的倾斜角为α,∴tanα=3,

∴,

故选A.【题目点拨】本题主要考查直线的倾斜角和斜率,三角恒等变换,属于中档题.8、B【解题分析】

根据系统抽样原理求出抽样间距,再根据第5组抽出的号码求出第1组抽出的号码,即可得出第2组、第3组抽取的号码.【题目详解】根据系统抽样原理知,抽样间距为200÷40=5,

当第5组抽出的号码为22时,即22=4×5+2,

所以第1组至第3组抽出的号码依次是2,7,1.

故选:B.【题目点拨】本题考查了系统抽样方法的应用问题,是基础题.9、B【解题分析】

利用等式的性质或特殊值法来判断各选项中不等式的正误.【题目详解】对于A选项,若,则,故A不成立;对于B选项,,在不等式同时乘以,得,另一方面在不等式两边同时乘以,得,,故B成立;对于选项C,在两边同时除以,可得,所以C不成立;对于选项D,令,,则有,,,所以D不成立.故选B.【题目点拨】本题考查不等式正误的判断,常用的判断方法有:不等式的基本性质、特殊值法以及比较法,在实际操作中,可结合不等式结构合理选择相应的方法进行判断,考查推理能力,属于基础题.10、B【解题分析】

模拟程序运行后,可得到输出结果,利用裂项相消法即可求出答案.【题目详解】模拟程序运行过程如下:0),判断为否,进入循环结构,1),判断为否,进入循环结构,2),判断为否,进入循环结构,3),判断为否,进入循环结构,……9),判断为否,进入循环结构,10),判断为是,故输出,故选:B.【题目点拨】本题主要考查程序框图,考查裂项相消法,难度不大.一般遇见程序框图求输出结果时,常模拟程序运行以得到结论.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

根据题意结合整除中的余数问题、最小公倍数问题,进行分析求解即可.【题目详解】由题意得:一个数用3除余2,用7除也余2,所以用3与7的最小公倍数21除也余2,而用21除余2的数我们首先就会想到23;23恰好被5除余3,即最小的一个数为23,同时这个数相差又是3,5,7的最小公倍数,即,即数列的通项公式可以表示为,故答案为:.【题目点拨】本题以数学文化为背景,利用数列中的整除、最小公倍数进行求解,考查逻辑推理能力和运算求解能力.12、3【解题分析】

直接利用数列的极限的运算法则求解即可.【题目详解】.故答案为:3【题目点拨】本题考查数列的极限的运算法则,考查计算能力,属于基础题.13、-1【解题分析】

由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【题目详解】由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣1.故答案为:﹣1.【题目点拨】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.14、【解题分析】

根据已知角的范围分别求出,,利用整体代换即可求解.【题目详解】,,,所以,,,,所以,=故答案为:【题目点拨】此题考查三角函数给值求值的问题,关键在于弄清角的范围,准确得出三角函数值,对所求的角进行合理变形,用已知角表示未知角.15、【解题分析】

如图

分别作于A,于C,于B,于D,

连CQ,BD则,,

当且仅当,即点A与点P重合时取最小值.

故答案选C.【题目点拨】16、【解题分析】

本题首先可根据角的大小依次成等差数列计算出,然后根据最大边和最小边的长是方程的两实根得到以及,最后根据余弦定理即可得出结果.【题目详解】因为角成等差数列,所以,又因为,所以.设方程的两根分别为、,则,由余弦定理可知:,所以.【题目点拨】本题考查根据余弦定理求三角形边长,考查等差中项以及韦达定理的应用,余弦定理公式为,体现了综合性,是中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或(2)【解题分析】

(1)运用三角形的面积公式和三角函数的和差公式,以及特殊角的函数值,可得所求角;(2)由正弦函数的值域可得的最大值,再由基本不等式可得的最大值,可得的范围,再由数列的单调性,讨论的范围,即可得到的取值范围.【题目详解】依题意,可得,由,得,又,所以.由得因为,所以,所以,当时,,(当且仅当时,等号成立)又因为对任意,存在,使得成立,所以,即,解得,因为数列为递增数列,且,所以,从而,又,所以,从而,又,①当时,,从而,此时与同号,又,即,②当时,由于趋向于正无穷大时,与趋向于相等,从而与趋向于相等,即存在正整数,使,从而,此时与异号,与数列为递增数列矛盾,综上,实数的取值范围为.【题目点拨】本题主要考查了三角函数的定义,三角函数的恒等变换,以及不等式恒成立,存在性问题解法和数列的单调性的判断和运用,试题综合性强,属于难题,着重考查了推理与运算能力,以及分析问题和解答问题的能力.18、(1);(2)【解题分析】

(1)等差数列中,由,,能求出通项公式.(2)利用等差数列前项和公式得到不等式,即可求出的最小值.【题目详解】解:(1)等差数列中,,.通项公式,即(2),,解得(舍去或,,的最小值为1.【题目点拨】本题考查等差数列的通项公式、项数的求法,考查等差数列的性质等基础知识,考查运算求解能力,属于基础题.19、(1)米,详见解析(2)205米【解题分析】

(1)由题意测得,,在中利用正弦定理求得的值;(2)解法一,中由余弦定理求得,中求得和的值,在中利用余弦定理求得的值.解法二,中求得,中利用余弦定理求得,利用三角恒等变换求得,在中利用余弦定理求得的值.【题目详解】解:(1)据题意,可测得,,在中,由正弦定理,有,即.解得(米).(2)解一:在中,百米,百米,百米,由余弦定理,可得,解得,∴.又由已知,在中,,可解得,从而的.∵,在中,由余弦定理得米所以,的长度约为205米.解二:(2)在中,求得.在中,由余弦定理,得,进而得,再由可求得,.在中,由余弦定理,得.所以,的长度约为205米.【题目点拨】本题考查了三角恒等变换与解三角形的应用问题,也考查了三角函数模型应用问题,是中档题.20、(1)证明见解析;(2).【解题分析】

(1)连交于,连,则点为中点,为中点,得,即可证明结论;(1)为正三角形,为中点,可得,再由底面,得底面,得,可证平面,有,为的平面角,解,即可求出结论.【题目详解】(1)连交于,连,三棱柱,侧面为平行四边形,所以点为中点,为中点,所以,因为平面,平面,所以直线平面;(2)为正三角形,为中点,可得,三棱柱,所以,底面,所以底面,底面,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论