浙江省杭州地区七校2024届高一数学第二学期期末综合测试模拟试题含解析_第1页
浙江省杭州地区七校2024届高一数学第二学期期末综合测试模拟试题含解析_第2页
浙江省杭州地区七校2024届高一数学第二学期期末综合测试模拟试题含解析_第3页
浙江省杭州地区七校2024届高一数学第二学期期末综合测试模拟试题含解析_第4页
浙江省杭州地区七校2024届高一数学第二学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省杭州地区七校2024届高一数学第二学期期末综合测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的部分图象如图所示,则的单调递减区间为A.B.C.D.2.将函数的图像向右平衡个单位长度,再把图象上所有点的横坐标伸长到原来的倍(纵坐标不变)得到函数的图象,则下列说法正确的是()A.函数的最大值为 B.函数的最小正周期为C.函数的图象关于直线对称 D.函数在区间上单调递增3.已知,若将它的图象向右平移个单位长度,得到函数的图象,则函数的图象的一条对称轴的方程为()A. B. C. D.4.已知直线与圆交于A、B两点,O是坐标原点,向量、满足,则实数a的值是()A.2 B. C.或 D.2或5.直线l:与圆C:交于A,B两点,则当弦AB最短时直线l的方程为A. B.C. D.6.执行如图所示的程序框图,输出的s值为A. B.C. D.7.把直线绕原点逆时针转动,使它与圆相切,则直线转动的最小正角度().A. B. C. D.8.下列不等式中正确的是()A.若,,则B.若,则C.若,则D.若,则9.已知非零向量,满足,且,则与的夹角为

A. B. C. D.10.已知为锐角,角的终边过点,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.平面四边形中,,则=_______.12.已知正方形,向正方形内任投一点,则的面积大于正方形面积四分之一的概率是______.13.在等比数列中,已知,则=________________.14.若复数满足(为虚数单位),则__________.15.在中,为上的一点,且,是的中点,过点的直线,是直线上的动点,,则_________.16.过点且与直线l:垂直的直线方程为______.(请用一般式表示)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱柱中,底面ABCD为菱形,平面ABCD,AC与BD交于点O,,,.(1)证明:平面平面;(2)求二面角的大小.18.求值:(1)一个扇形的面积为1,周长为4,求圆心角的弧度数;(2)已知,计算.19.数学的发展推动着科技的进步,正是基于线性代数、群论等数学知识的极化码原理的应用,华为的5G技术领先世界.目前某区域市场中5G智能终端产品的制造由H公司及G公司提供技术支持据市场调研预测,5C商用初期,该区域市场中采用H公司与G公司技术的智能终端产品分别占比及假设两家公司的技术更新周期一致,且随着技术优势的体现每次技术更新后,上一周期采用G公司技术的产品中有20%转而采用H公司技术,采用H公司技术的仅有5%转而采用G公司技术设第n次技术更新后,该区域市场中采用H公司与G公司技术的智能终端产品占比分别为及,不考虑其它因素的影响.(1)用表示,并求实数使是等比数列;(2)经过若干次技术更新后该区域市场采用H公司技术的智能终端产品占比能否达到75%以上?若能,至少需要经过几次技术更新;若不能,说明理由?(参考数据:)20.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P().(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.21.内角的对边分别为,已知.(1)求;(2)若,,求的面积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

根据图象可得最小正周期,求得;利用零点和的符号可确定的取值;令,解不等式即可求得单调递减区间.【题目详解】由图象可知:又,,由图象可知的一个可能的取值为令,,解得:,即的单调递减区间为:,本题正确选项:【题目点拨】本题考查利用图象求解余弦型函数的解析式、余弦型函数单调区间的求解问题;关键是能够灵活应用整体对应的方式来求解解析式和单调区间,属于常考题型.2、C【解题分析】

根据函数y=Asin(ωx+φ)的图象变换规律,得到g(x)的解析式,再利用正弦函数的图象性质,得出结论.【题目详解】将函数的图象向右平移个单位长度,可得y=2sin(2x)的图象,再把图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数g(x)=2sin(x)的图象,故g(x)的最大值为2,故A错误;显然,g(x)的最小正周期为2π,故B错误;当时,g(x)=,是最小值,故函数g(x)的图象关于直线对称,故C正确;在区间上,x∈[,],函数g(x)=2sin(x)单调递减,故D错误,故选:C.【题目点拨】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象性质应用,属于基础题.3、B【解题分析】分析:由左加右减,得出解析式,因为解析式为正弦函数,所以令,解出,对k进行赋值,得出对称轴.详解:由左加右减可得,解析式为正弦函数,则令,解得:,令,则,故选B.点睛:三角函数图像左右平移时,需注意要把x放到括号内加减,求三角函数的对称轴,则令等于正弦或余弦函数的对称轴公式,求出x解析式,即为对称轴方程.4、D【解题分析】

由,两边平方,得,所以,则为等腰直角三角形,而圆的半径,则原点到直线的距离为,所以,解得的值为2或-2.故选D.5、A【解题分析】

先求出直线经过的定点,再求出弦AB最短时直线l的方程.【题目详解】由题得,所以直线l过定点P.当CP⊥l时,弦AB最短.由题得,所以.所以直线l的方程为.故选:A【题目点拨】本题主要考查直线过定点问题,考查直线方程的求法,考查直线和圆的位置关系,意在考查学生对这些知识的理解掌握水平和分析推理能力.6、B【解题分析】分析:初始化数值,执行循环结构,判断条件是否成立,详解:初始化数值循环结果执行如下:第一次:不成立;第二次:成立,循环结束,输出,故选B.点睛:此题考查循环结构型程序框图,解决此类问题的关键在于:第一,要确定是利用当型还是直到型循环结构;第二,要准确表示累计变量;第三,要注意从哪一步开始循环,弄清进入或终止的循环条件、循环次数.7、B【解题分析】

根据直线过原点且与圆相切,求出直线的斜率,再数形结合计算最小旋转角。【题目详解】解析:由题意,设切线为,∴.∴或.∴时转动最小.∴最小正角为.故选B.【题目点拨】本题考查直线与圆的位置关系,属于基础题。8、D【解题分析】

根据不等式的性质逐一判断即可得解.【题目详解】解:对于选项A,若,,不妨取,则,即A错误;对于选项B,若,当时,则,即B错误;对于选项C,若,不妨取,则,即C错误;对于选项D,若,则,即,,即D正确,故选:D.【题目点拨】本题考查了不等式的性质,属基础题.9、B【解题分析】

根据题意,建立与的关系,即可得到夹角.【题目详解】因为,所以,则,则,所以,所以夹角为故选B.【题目点拨】本题主要考查向量的数量积运算,难度较小.10、B【解题分析】

由题意利用任意角的三角函数的定义求得和,再利用同角三角函数的基本关系求得的值,再利用两角差的余弦公式求得的值.【题目详解】角的终边过点,,又为锐角,由,可得故选B.【题目点拨】本题考查任意角的三角函数的定义,考查两角差的余弦,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

先求出,再求出,再利用余弦定理求出AD得解.【题目详解】依题意得中,,故.在中,由正弦定理可知,,得.在中,因为,故.则.在中,由余弦定理可知,,即.得.【题目点拨】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平,属于中档题.12、【解题分析】

向正方形内任投一点,所有等可能基本事件构成正方形区域,当的面积大于正方形面积四分之一的所有基本事件构成区域矩形区域,由面积比可得概率值.【题目详解】如图边长为1的正方形中,分别是的中点,当点在线段上时,的面积为,所以的面积大于正方形面积四分之一,此时点应在矩形内,由几何概型得:,故填.【题目点拨】本题考查几何概型,利用面积比求概率值,考查对几何概型概率计算.13、【解题分析】14、【解题分析】分析:由复数的除法运算可得解.详解:由,得.故答案为:.点睛:本题考查了复数的除法运算,属于基础题.15、【解题分析】

用表示出,由对应相等即可得出.【题目详解】因为,所以解得得.【题目点拨】本题主要考查了平面向量的基本定理,以及向量的三角形法则,平面上任意不共线的一组向量可以作为一组基底.16、【解题分析】

与直线垂直的直线方程可设为,再将点的坐标代入运算即可得解.【题目详解】解:与直线l:垂直的直线方程可设为,又该直线过点,则,则,即点且与直线l:垂直的直线方程为,故答案为:.【题目点拨】本题考查了与已知直线垂直的直线方程的求法,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)﹒【解题分析】

(1)证面面垂直只需证一个平面内有一条直线和另一个平面垂直(2)通过作图需找二面角的平面角即可【题目详解】(1)证明:由平面ABCD,有;由四边形ABCD为菱形,所以AC⊥BD:又因为,所以平面,因为平面,所以平面平面,(2)过O作于E,连结BE,由(1)知平面,所以,又因为,,所以平面BDE,从而;由,,所以∠OEB为二面角的平面角.由为等边三角形且O为BD中点,有,,,由,有,由,有,从而.在中,,所以,即.综上,二面角的大小为﹒【题目点拨】面面垂直可通过线面垂直进行证明,二面角的平面角有正有负,解题时要注意结合题设关系进行正确判断18、(1);(2).【解题分析】

(1)设出扇形的半径为,弧长为,利用面积、周长的值,得到关于的方程;(2)由已知条件得到,再代入所求的式子进行约分求值.【题目详解】(1)设扇形的半径为,弧长为,则解得:所以圆心角的弧度数.(2)因为,所以,所以.【题目点拨】若三个中,只要知道其中一个,则另外两个都可求出,即知一求二.19、(1),;(2)见解析【解题分析】

(1)根据题意经过次技术更新后,通过整理得到,构造是等比数列,求出,得证;(2)由(1)可求出通项,令,通过相关计算即可求出n的最小值,从而得到答案.【题目详解】(1)由题意,可设5商用初期,该区域市场中采用H公司与G公司技术的智能终端产品的占比分别为.易知经过次技术更新后,则,①由①式,可设,对比①式可知.又.从而当时,是以为首项,为公比的等比数列.(2)由(1)可知,所以经过次技术更形后,该区域市场采用H公司技术的智能终端产品占比.由题意,令,得.故,即至少经过6次技术更新,该区域市场采用H公司技术的智能终端产品占比能达到75%以上.【题目点拨】本题主要考查数列的实际应用,等比数列的证明,数列与不等式的相关计算,综合性强,意在考查学生的阅读理解能力,转化能力,分析能力,计算能力,难度较大.20、(Ⅰ);(Ⅱ)或.【解题分析】

分析:(Ⅰ)先根据三角函数定义得,再根据诱导公式得结果,(Ⅱ)先根据三角函数定义得,再根据同角三角函数关系得,最后根据,利用两角差的余弦公式求结果.【题目详解】详解:(Ⅰ)由角的终边过点得,所以.(Ⅱ)由角的终边过点得,由得.由得,所以或.点睛:三角函数求值的两种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.①一般可以适当变换已知式,求得另外函数式的值,以备应用;②变换待求式,便于将已知式求得的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论