深圳高级中学2024届数学高一第二学期期末达标检测模拟试题含解析_第1页
深圳高级中学2024届数学高一第二学期期末达标检测模拟试题含解析_第2页
深圳高级中学2024届数学高一第二学期期末达标检测模拟试题含解析_第3页
深圳高级中学2024届数学高一第二学期期末达标检测模拟试题含解析_第4页
深圳高级中学2024届数学高一第二学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

深圳高级中学2024届数学高一第二学期期末达标检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的图像大致为()A. B. C. D.2.如图,飞机的航线和山顶在同一个铅垂面内,若飞机的高度为海拔18km,速度为1000km/h,飞行员先看到山顶的俯角为30°,经过1min后又看到山顶的俯角为75°,则山顶的海拔高度为(精确到0.1km)()A.11.4 B.6.6C.6.5 D.5.63.已知、的取值如下表所示:如果与呈线性相关,且线性回归方程为,则()A. B. C. D.4.已知:平面内不再同一条直线上的四点、、、满足,若,则()A.1 B.2 C. D.5.若实数,满足约束条件则的取值范围为()A. B. C. D.6.在等差数列中,,则()A. B. C. D.7.若实数a、b满足条件,则下列不等式一定成立的是A. B. C. D.8.已知,,,,则()A. B. C.或 D.或9.已知三棱柱()A. B. C. D.10.已知a,b为不同的直线,为平面,则下列命题中错误的是()A.若,,则 B.若,,则C.若,,则 D.若,,则二、填空题:本大题共6小题,每小题5分,共30分。11.终边在轴上的角的集合是_____________________.12.已知方程的两根分别为、、且,且__________.13.若角是第四象限角,则角的终边在_____________14.已知函数,数列的通项公式是,当取得最小值时,_______________.15.如图,正方体的棱长为2,点在正方形的边界及其内部运动,平面区域由所有满足的点组成,则的面积是__________.16.若函数图象各点的横坐标缩短为原来的一半,再向左平移个单位,得到的函数图象离原点最近的的对称中心是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在等差数列中,,其前项和为,等比数列的各项均为正数,,且,.(1)求数列和的通项公式;(2)令,设数列的前项和为,求()的最大值与最小值.18.已知向量,满足,,.(1)求向量,所成的角的大小;(2)若,求实数的值.19.已知为锐角三角形,内角A,B,C的对边分别为a,b,c,若.(1)求C;(2)若,且的面积为,求的周长.20.已知(且)是R上的奇函数,且.(1)求的解析式;(2)若关于x的方程在区间内只有一个解,求m的取值集合;(3)设,记,是否存在正整数n,使不得式对一切均成立?若存在,求出所有n的值,若不存在,说明理由.21.2019年4月23日“世界读书日”来临之际,某校为了了解中学生课外阅读情况,随机抽取了100名学生,并获得了他们一周课外阅读时间(单位:小时)的数据,按阅读时间分组:第一组[0,5),第二组[5,10),第三组[10,15),第四组[15,20),第五组[20,25],绘制了频率分布直方图如下图所示.已知第三组的频数是第五组频数的3倍.(1)求的值,并根据频率分布直方图估计该校学生一周课外阅读时间的平均值;(2)现从第三、四、五这3组中用分层抽样的方法抽取6人参加校“中华诗词比赛”.经过比赛后,从这6人中随机挑选2人组成该校代表队,求这2人来自不同组别的概率.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】

先判断函数为偶函数排除;再根据当时,,排除得到答案.【题目详解】,偶函数,排除;当时,,排除故选:【题目点拨】本题考查了函数图像的识别,通过函数的奇偶性和特殊函数点可以排除选项快速得到答案.2、B【解题分析】AB=1000×(km),∴BC=·sin30°=(km).∴航线离山顶h=×sin75°≈11.4(km).∴山高为18-11.4=6.6(km).选B.3、A【解题分析】

计算出、,再将点的坐标代入回归直线方程,可求出的值.【题目详解】由表格中的数据可得,,由于回归直线过样本的中心点,则有,解得,故选:A.【题目点拨】本题考查回归直线方程中参数的计算,解题时要充分利用回归直线过样本的中心点这一结论,考查计算能力,属于基础题.4、D【解题分析】

根据向量的加法原理对已知表示式转化为所需向量的运算对照向量的系数求解.【题目详解】根据向量的加法原理得所以,,解得且故选D.【题目点拨】本题考查向量的线性运算,属于基础题.5、A【解题分析】

的几何意义为点与点所在直线的斜率,根据不等式表示的可行域,可得出取值范围.【题目详解】的几何意义为点与点所在直线的斜率.画出如图的可行域,当直线经过点时,;当直线经过点时,.的取值范围为,故选A.【题目点拨】本题考查了不等式表示的可行域的画法,以及目标函数为分式时求取值范围的方法.6、B【解题分析】

利用等差中项的性质得出关于的等式,可解出的值.【题目详解】由等差中项的性质可得,由于,即,即,解得,故选:B.【题目点拨】本题考查等差中项性质的应用,解题时充分利用等差中项的性质进行计算,可简化计算,考查运算能力,属于基础题.7、D【解题分析】

根据题意,由不等式的性质依次分析选项,综合即可得答案.【题目详解】根据题意,依次分析选项:对于A、,时,有成立,故A错误;对于B、,时,有成立,故B错误;对于C、,时,有成立,故C错误;对于D、由不等式的性质分析可得若,必有成立,则D正确;故选:D.【题目点拨】本题考查不等式的性质,对于错误的结论举出反例即可.8、B【解题分析】

先根据角的范围及平方关系求出和,然后可算出,进而可求出【题目详解】因为,,,所以,,所以,所以因为,所以故选:B【题目点拨】在由三角函数的值求角时,应根据角的范围选择合适的三角函数,以免产生多的解.9、C【解题分析】因为直三棱柱中,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC为过底面ABC的截面圆的直径.取BC中点D,则OD⊥底面ABC,则O在侧面BCC1B1内,矩形BCC1B1的对角线长即为球直径,所以2R==13,即R=10、D【解题分析】

根据线面垂直与平行的性质与判定分析或举出反例即可.【题目详解】对A,根据线线平行与线面垂直的性质可知A正确.对B,根据线线平行与线面垂直的性质可知B正确.对C,根据线面垂直的性质知C正确.对D,当,时,也有可能.故D错误.故选:D【题目点拨】本题主要考查了空间中平行垂直的判定与性质,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

由于终边在y轴的非负半轴上的角的集合为而终边在y轴的非正半轴上的角的集合为,终边在轴上的角的集合是,所以,故答案为.12、【解题分析】

由韦达定理和两角和的正切公式可得,进一步缩小角的范围可得,进而可求.【题目详解】方程两根、,,,,又,,,,,,,结合,,故答案为.【题目点拨】本题考查两角和与差的正切函数,涉及韦达定理,属中档题.13、第二或第四象限【解题分析】

根据角是第四象限角,写出角的范围,即可求出角的终边所在位置.【题目详解】因为角是第四象限角,所以,即有,当为偶数时,角的终边在第四象限;当为奇数时,角的终边在第二象限,故角的终边在第二或第四象限.【题目点拨】本题主要考查象限角的集合的应用.14、110【解题分析】

要使取得最小值,可令,即,对的值进行粗略估算即可得到答案.【题目详解】由题知:①.要使①式取得最小值,可令①式等于.即,.又因为,,则当时,,,①式.则当时,,,①式.当或时,①式的值会变大,所以时,取得最小值.故答案为:【题目点拨】本题主要考查数列的函数特征,同时考查了指数函数和对数函数的性质,核心素养是考查学生灵活运用知识解决问题的能力,属于难题.15、【解题分析】,所以点平面区域是底面内以为圆心,以1为半径的外面区域,则的面积是16、【解题分析】

由二倍角公式化简函数式,然后由三角函数图象变换得新解析式,结合正弦函数性质得对称中心.【题目详解】由题意,经过图象变换后新函数解析式为,由,,,绝对值最小的是,因此所求对称中心为.故答案为:.【题目点拨】本题考查三角函数的图象变换,考查正弦函数的性质,考查二倍角公式,掌握正弦函数性质是解题关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)的最大值是,最小值是.【解题分析】试题分析:(1)由条件列关于公差与公比的方程组,解得,,再根据等差与等比数列通项公式求通项公式(2)化简可得,再根据等比数列求和公式得,结合函数单调性,可确定其最值试题解析:(1)设等差数列的公差为,等比数列的公比为,则解得,,所以,.(2)由(1)得,故,当为奇数时,,随的增大而减小,所以;当为偶数时,,随的增大而增大,所以,令,,则,故在时是增函数.故当为奇数时,;当为偶数时,,综上所述,的最大值是,最小值是.18、(1)(2)【解题分析】

(1)化简即得向量,所成的角的大小;(2)由,可得,化简即得解.【题目详解】解:(1)由,可得.即,因为,所以,又因为,,代入上式,可得,即.(2)由,可得.即,则,得.【题目点拨】本题主要考查数量积的运算和向量的模的运算,意在考查学生对这些知识的理解掌握水平,属于基础题.19、(1);(2).【解题分析】

(1)根据正弦定理可求,利用特殊角三角函数可求C;(2)由和的面积公式,可求,再根据余弦定理求得解出a,b即可求的周长.【题目详解】(1)因为,所以由正弦定理得,又所以,又为锐角三角形,所以.(2)因为,所以由面积公式得,.又因为,所以由余弦定理得,,所以,或,,故的周长为.【题目点拨】本题考查正弦定理、余弦定理的应用,三角形面积公式在解三角形中的应用,属于基础题.20、(1);(2)m的取值集合或}(3)存在,【解题分析】

(1)利用奇函数的性质得到关于实数k的方程,解方程即可,注意验证所得的结果;(2)结合函数的单调性和函数的奇偶性脱去f的符号即可;(3)可得,即可得:即可.【题目详解】(1)由奇函数的性质可得:,解方程可得:.此时,满足,即为奇函数.的解析式为:;(2)函数的解析式为:,结合指数函数的性质可得:在区间内只有一个解.即:在区间内只有一个解.(i)当时,,符合题意.(ii)当时,只需且时,,此时,符合题意综上,m的取值集合或}(3)函数为奇函数关于对称又当且仅当时等号成立所以存在正整数n,使不得式对一切均成立.【题目点拨】本题考查了复合型指数函数综合,考查了学生综合分析,转化划归,数形结合,数学运算的能力,属于难题.21、(1)a=0.06,平均值为12.25小时(2)【解题分析】

(1)由频率分布直方图可得第三组和第五组的频率之和,第三组的频率,由此能求出a和该样本数据的平均数,从而可估计该校学生一周课外阅读时间的平均值;(2)从第3、4、5组抽取的人数分别为3、2、1,设为A,B,C,D,E,F,利用列举法能求出从该6人

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论