![2024届吉林省乾安县七中高一数学第二学期期末考试模拟试题含解析_第1页](http://file4.renrendoc.com/view11/M02/06/10/wKhkGWWgIcGAfE8oAAHhjxy0cdE178.jpg)
![2024届吉林省乾安县七中高一数学第二学期期末考试模拟试题含解析_第2页](http://file4.renrendoc.com/view11/M02/06/10/wKhkGWWgIcGAfE8oAAHhjxy0cdE1782.jpg)
![2024届吉林省乾安县七中高一数学第二学期期末考试模拟试题含解析_第3页](http://file4.renrendoc.com/view11/M02/06/10/wKhkGWWgIcGAfE8oAAHhjxy0cdE1783.jpg)
![2024届吉林省乾安县七中高一数学第二学期期末考试模拟试题含解析_第4页](http://file4.renrendoc.com/view11/M02/06/10/wKhkGWWgIcGAfE8oAAHhjxy0cdE1784.jpg)
![2024届吉林省乾安县七中高一数学第二学期期末考试模拟试题含解析_第5页](http://file4.renrendoc.com/view11/M02/06/10/wKhkGWWgIcGAfE8oAAHhjxy0cdE1785.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届吉林省乾安县七中高一数学第二学期期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若变量满足约束条件则的最大值为()A.4 B.3 C.2 D.12.一支田径队有男运动员560人,女运动员420人,为了解运动员的健康情况,从男运动员中任意抽取16人,从女生中任意抽取12人进行调查.这种抽样方法是()A.简单随机抽样法 B.抽签法C.随机数表法 D.分层抽样法3.某市电视台为调查节目收视率,想从全市3个县按人口数用分层抽样的方法抽取一个容量为的样本,已知3个县人口数之比为,如果人口最多的一个县抽出60人,那么这个样本的容量等于()A.96 B.120 C.180 D.2404.下列函数中,图象的一部分如图所示的是()A. B.C. D.5.已知,下列不等式中成立的是()A. B. C. D.6.把等差数列1,3,5,7,9,…依次分组,按第一个括号一个数,第二个括号二个数,第三个括号三个数,第四个括号一个数,…循环分为,,,,,,,…,则第11个括号内的各数之和为()A.99 B.37 C.135 D.807.下列函数中,既是偶函数又在(0,+∞)上是单调递减的是()A.y=-cosx B.y=lgx8.若程序框图如图所示,则该程序运行后输出k的值是()A.5 B.6 C.7 D.89.已知函数,,若成立,则的最小值为()A. B. C. D.10.某程序框图如图所示,若输出的结果为,则判断框内应填入的条件可以为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的值域是________12.给出以下四个结论:①平行于同一直线的两条直线互相平行;②垂直于同一平面的两个平面互相平行;③若,是两个平面;,是异面直线;且,,,,则;④若三棱锥中,,,则点在平面内的射影是的垂心;其中错误结论的序号为__________.(要求填上所有错误结论的序号)13.已知,则的最小值是__________.14.圆锥的底面半径是3,高是4,则圆锥的侧面积是__________.15.函数的值域是________.16.一个封闭的正三棱柱容器,该容器内装水恰好为其容积的一半(如图1,底面处于水平状态),将容器放倒(如图2,一个侧面处于水平状态),这时水面与各棱交点分别为E,F、,,则的值是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,,.(1)若,求的值;(2)若,,求的值.18.在平面立角坐标系中,过点的圆的圆心在轴上,且与过原点倾斜角为的直线相切.(1)求圆的标准方程;(2)点在直线上,过点作圆的切线、,切点分别为、,求经过、、、四点的圆所过的定点的坐标.19.已知的角、、所对的边分别是、、,设向量,,.(1)若,求证:为等腰三角形;(2)若,边长,角,求的面积.20.已知各项为正数的数列满足:且.(1)证明:数列为等差数列.(2)若,证明:对一切正整数n,都有21.在中,,,,解三角形.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
先根据约束条件画出可行域,再利用几何意义求最值.【题目详解】作出约束条件,所对应的可行域(如图阴影部分)变形目标函数可得,平移直线可知,当直线经过点时,直线的截距最小,代值计算可得取最大值故选B.【点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.2、D【解题分析】
若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样【题目详解】总体由男生和女生组成,比例为560:420=4:1,所抽取的比例也是16:12=4:1.故选D.【题目点拨】本小题主要考查抽样方法,当总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样,属基本题.3、B【解题分析】
根据分层抽样的性质,直接列式求解即可.【题目详解】因为3个县人口数之比为,而人口最多的一个县抽出60人,则根据分层抽样的性质,有,故选:B.【题目点拨】本题考查分层抽样,解题关键是明确分层抽样是按比例进行抽样.4、D【解题分析】
设图中对应三角函数最小正周期为T,从图象看出,T=,所以函数的最小正周期为π,函数应为y=向左平移了个单位,即=,选D.5、A【解题分析】
逐个选项进行判断即可.【题目详解】A选项,因为,所以.当时即不满足选项B,C,D.故选A.【题目点拨】此题考查不等式的基本性质,是基础题.6、D【解题分析】
由已知分析,寻找数据的规律,找出第11个括号的所有数据即可.【题目详解】因为每三个括号,总共有数据1+2+3=6个,相当于一个“周期”,故第11个括号,在第4个周期的第二个括号;则第11个括号中有两个数,其数值为首项为1,公差为2的等差数列数列中的第20项(6,第21项的和,即.故选:D.【题目点拨】本题考查数列新定义问题,涉及归纳总结,属中档题.7、C【解题分析】
先判断各函数奇偶性,再找单调性符合题意的即可。【题目详解】首先可以判断选项D,y=e然后,由图像可知,y=-cosx在(0,+∞)上不单调,y=lg只有选项C:y=1-x【题目点拨】本题主要考查函数的性质,奇偶性和单调性。8、A【解题分析】试题分析:第一次循环运算:;第二次:;第三次:;第四次:;第五次:,这时符合条件输出,故选A.考点:算法初步.9、B【解题分析】,则,所以,则,易知,,则在单调递减,单调递增,所以,故选B。点睛:本题考查导数的综合应用。利用导数求函数的极值和最值是导数综合应用题型中的常见考法。通过求导,首先观察得到导函数的极值点,利用图象判断出单调增减区间,得到最值。10、D【解题分析】
由已知可得,该程序是利用循环结构计算输出变量S的值,模拟过程分别求出变量的变化情况可的结果.【题目详解】程序在运行过程中,判断框前的变量的值如下:k=1,S=1;k=2,S=4;k=3,S=11,k=4,S=26;此时应该结束循环体,并输出S的值为26,所以判断框应该填入条件为:故选D【题目点拨】本题主要考查了程序框图,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
利用函数的单调性,结合函数的定义域求解即可.【题目详解】因为函数的定义域是,,函数是增函数,所以函数的最小值为:,最大值为:.所以函数的值域为:,.故答案为,.【题目点拨】本题考查函数的单调性以及函数的值域的求法,考查计算能力.12、②【解题分析】
③①可由课本推论知正确;②可举反例;④可进行证明.【题目详解】命题①平行于同一直线的两条直线互相平行,由课本推论知是正确的;②垂直于同一平面的两个平面互相平行,是错误的,例如正方体的上底面,前面和右侧面,是互相垂直的关系;③根据课本推论知结论正确;④若三棱锥中,,,则点在平面内的射影是的垂心这一结论是正确的;作出B在底面的射影O,连结AO,DO,则,同理,,进而得到O为三角形的垂心.
故答案为②【题目点拨】这个题目考查了命题真假的判断,一般这类题目可以通过课本的性质或者结论进行判断;也可以通过举反例来解决这个问题.13、【解题分析】分析:利用题设中的等式,把的表达式转化成,展开后,利用基本不等式求得y的最小值.详解:因为,所以,所以(当且仅当时等号成立),则的最小值是,总上所述,答案为.点睛:该题考查的是有关两个正数的整式形式和为定值的情况下求其分式形式和的最值的问题,在求解的过程中,注意相乘,之后应用基本不等式求最值即可,在做乘积运算的时候要注意乘1是不变的,如果不是1,要做除法运算.14、【解题分析】分析:由已知中圆锥的底面半径是,高是,由勾股定理,我们可以计算出圆锥的母线长,代入圆锥侧面积公式,即可得到结论.详解:圆锥的底面半径是,高是,圆锥的母线长,则圆锥侧面积公式,故答案为.点睛:本题主要考查圆锥的性质与圆锥侧面积公式,意在考查对基本公式的掌握与理解,属于简单题.15、【解题分析】
求出函数在上的值域,根据原函数与反函数的关系即可求解.【题目详解】因为函数,当时是单调减函数当时,;当时,所以在上的值域为根据反函数的定义域就是原函数的值域可得函数的值域为故答案为:【题目点拨】本题求一个反三角函数的值域,着重考查了余弦函数的图像与性质和反函数的性质等知识,属于基础题.16、【解题分析】
设,则,由题意得:,由此能求出的值.【题目详解】设,则,由题意得:,解得,.故答案为:.【题目点拨】本题考查两线段比值的求法、三棱柱的体积等基础知识,考查运算求解能力,是中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)或【解题分析】
(1)根据向量平行的坐标公式得出,利用二倍角公式以及弦化切即可得出答案;(2)利用向量的模长公式得出,由二倍角公式以及降幂公式,辅助角公式得出,结合正弦函数的性质得出的值.【题目详解】(1)由,得,所以.所以.(2)由,得所以,所以,所以.因为,所以,所以或解得或.【题目点拨】本题主要考查了由向量平行求参数,模长公式,简单的三角恒等变换以及正弦函数的性质的应用,属于中档题.18、(1)(2)经过、、、四点的圆所过定点的坐标为、【解题分析】
(1)先算出直线方程,根据相切和过点,圆心在轴上联立方程解得答案.(2)取线段的中点,经过、、、四点的圆是以线段为直径的圆,设点的坐标为,则点的坐标为,将圆方程表示出来,联立方程组解得答案.【题目详解】(1)由题意知,直线的方程为,整理为一般方程可得由圆的圆心在轴上,可设圆的方程为,由题意有,解得:,,故圆的标准方程为.(2)由圆的几何性质知,,,取线段的中点,由直角三角形的性质可知,故经过、、、四点的圆是以线段为直径的圆,设点的坐标为,则点的坐标为有则以为直径的圆的方程为:,整理为可得.令,解得或,故经过、、、四点的圆所过定点的坐标为、.【题目点拨】本题考查了圆的方程,切线问题,四点共圆,定点问题,综合性强,技巧性高,意在考查学生的综合应用能力.19、(1)见解析(2)【解题分析】
⑴因为,所以,即,其中是的外接圆半径,所以,所以为等腰三角形.⑵因为,所以.由余弦定理可知,,即解方程得:(舍去)所以.20、(1)证明见解析.(2)证明见解析.【解题分析】
(1)根据所给递推公式,将式子变形,即可由等差数列定义证明数列为等差数列.(2)根据数列为等差数列,结合等差数列通项公式求法求得通项公式,并变形后令.由求得的取值范围,即可表示出,由不等式性质进行放缩,求得后,即可证明不等式成立.【题目详解】(1)证明:各项为正数的数列满足:则,,同取倒数可得,所以,由等差数列定义可知数列为等差数列.(2)证明:由(1)可知数列为等差数列.,则数列是以为首项,以为公差的等差数列.则,令,因为,所以,则,所以,所以,所以由不等式性质可知,若,则总成立,因而,所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 港口柴油罐车装卸合同
- 二零二五年度宝石专家珠宝店品牌推广合同
- 2025年度办公用品店租赁与品牌授权合同
- 产品研发流程规范作业指导书
- 酒水购销合同年
- 软件公司保密协议书
- 委托房屋买卖合同
- 建筑装饰工程门窗施工合同
- 虚拟现实技术专利申请合同
- 展览会管理合同协议
- JJF 1905-2021磁通计校准规范
- GB 5009.76-2014食品安全国家标准食品添加剂中砷的测定
- 燃气锅炉安装施工方案5
- 2023年湖北成人学位英语考试真题
- 睡眠中心课件
- SJG 112-2022 既有建筑幕墙安全性鉴定技术标准高清最新版
- 公共区管理部班组建设进度推进表
- 申论详解(PPT课件)
- 封条模板A4直接打印版
- 立式加工中心说明书
- 唐太宗李世民
评论
0/150
提交评论