




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖北省黄冈市麻城实验高中数学高一下期末教学质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.秦九韶是我国南宋时期的数学家,在他所著的《数书九章》中提出的多项式求值的“秦九韶算法”,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法,求某多项式值的一个实例,若输入的值分别为4和2,则输出的值为()A.32 B.64 C.65 D.1302.已知样本数据为3,1,3,2,3,2,则这个样本的中位数与众数分别为()A.2,3 B.3,3 C.2.5,3 D.2.5,23.已知,且,则()A. B. C. D.4.已知平面向量,且,则()A. B. C. D.5.已知扇形的面积为,半径为,则扇形的圆心角的弧度数为A. B. C. D.6.若直线与圆交于两点,关于直线对称,则实数的值为()A. B. C. D.7.“()”是“函数是奇函数”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.设矩形的长为,宽为,其比满足∶=,这种矩形给人以美感,称为黄金矩形.黄金矩形常应用于工艺品设计中.下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.5980.6250.6280.5950.639乙批次:0.6180.6130.5920.6220.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是A.甲批次的总体平均数与标准值更接近B.乙批次的总体平均数与标准值更接近C.两个批次总体平均数与标准值接近程度相同D.两个批次总体平均数与标准值接近程度不能确定9.若直线始终平分圆的周长,则的最小值为()A. B.5 C.2 D.1010.已知,,则点在直线上的概率为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设是公差不为0的等差数列,且成等比数列,则的前10项和________.12.关于函数,下列命题:①若存在,有时,成立;②在区间上是单调递增;③函数的图象关于点成中心对称图象;④将函数的图象向左平移个单位后将与的图象重合.其中正确的命题序号__________13.方程组对应的增广矩阵为__________.14.数列中,如果存在使得“,且”成立(其中,),则称为的一个“谷值”。若且存在“谷值”则实数的取值范围是__________.15.已知直线l与圆C:交于A,B两点,,则满足条件的一条直线l的方程为______.16.若函数的图象过点,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求函数的最小正周期和值域;(2)设为的三个内角,若,,求的值.18.已知数列满足:,,数列满足.(1)若数列的前项和为,求的值;(2)求的值.19.如图,直三棱柱中,点是棱的中点,点在棱上,已知,,(1)若点在棱上,且,求证:平面平面;(2)棱上是否存在一点,使得平面证明你的结论。20.已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为、高为的等腰三角形,侧视图是一个底边长为、高为的等腰三角形.(1)求该几何体的体积V;(2)求该几何体的侧面积S.21.已知分别是数列的前项和,且.(1)求数列与的通项公式;(2)求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】程序运行循环时变量值为:;;;,退出循环,输出,故选C.2、C【解题分析】
将样本数据从小到大排列即可求得中位数,再找出出现次数最多的数即为众数.【题目详解】将样本数据从小到大排列:1,2,2,3,3,3,中位数为,众数为3.故选:C.【题目点拨】本题考查了中位数和众数的概念,属于基础题.3、D【解题分析】
根据不等式的性质,一一分析选择正误即可.【题目详解】根据不等式的性质,当时,对于A,若,则,故A错误;对于B,若,则,故B错误;对于C,若,则,故C错误;对于D,当时,总有成立,故D正确;故选:D.【题目点拨】本题考查不等式的基本性质,属于基础题.4、B【解题分析】试题分析:因为,,且,所以,,故选B.考点:1、平面向量坐标运算;2、平行向量的性质.5、A【解题分析】
设半径为,圆心角为,根据扇形面积公式,结合题中数据,即可求出结果.【题目详解】设半径为,圆心角为,则对应扇形面积,又,,则故选A.【题目点拨】本题主要考查由扇形面积求圆心角的问题,熟记扇形面积公式即可,属于常考题型.6、A【解题分析】
由题意,得直线是线段的中垂线,则其必过圆的圆心,将圆心代入直线,即可得本题答案.【题目详解】解:由题意,得直线是线段的中垂线,所以直线过圆的圆心,圆的圆心为,,解得.故选:A.【题目点拨】本题给出直线与圆相交,且两个交点关于已知直线对称,求参数的值.着重考查了直线与圆的位置关系等知识,属于基础题.7、C【解题分析】若,则,函数为奇函数,所以充分性成立;反之,若函数是奇函数,则,即,因此必要性也是成立,所以“”是“函数是奇函数”充要条件,故选C.8、A【解题分析】甲批次的平均数为0.617,乙批次的平均数为0.6139、B【解题分析】试题分析:把圆的方程化为标准方程得,所以圆心坐标为半径,因为直线始终平分圆的周长,所以直线过圆的圆心,把代入直线得;即,在直线上,是点与点的距离的平方,因为到直线的距离,所以的最小值为,故选B.考点:1、圆的方程及几何性质;2、点到直线的距离公式及最值问题的应用.【方法点晴】本题主要考查圆的方程及几何性质、点到直线的距离公式及最值问题的应用,属于难题.解决解析几何的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将解析几何中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题就是利用几何意义,将的最小值转化为点到直线的距离解答的.10、B【解题分析】
先求出点)的个数,然后求出点在直线上的个数,最后根据古典概型求出概率.【题目详解】点的个数为,其中点三点在直线上,所以点在直线上的概率为,故本题选B.【题目点拨】本题考查了古典概型概率的计算公式,考查了数学运算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
利用等差数列的通项公式和等比数列的性质求出公差,由此能求出【题目详解】因为是公差不为0的等差数列,且成等比数列所以,即解得或(舍)所以故答案为:【题目点拨】本题考查等差数列前10项和的求法,解题时要认真审题,注意等比数列的性质合理运用.12、①③【解题分析】
根据题意,由于,根据函数周期为,可知①、若存在,有时,成立;正确,对于②、在区间上是单调递减;因此错误,对于③、,函数的图象关于点成中心对称图象,成立.对于④、将函数的图象向左平移个单位后得到,与的图象重合错误,故答案为①③考点:命题的真假点评:主要是考查了三角函数的性质的运用,属于基础题.13、【解题分析】
根据增广矩阵的概念求解即可.【题目详解】方程组对应的增广矩阵为,故答案为:.【题目点拨】本题考查增广矩阵的概念,是基础题.14、【解题分析】
求出,,,当,递减,递增,分别讨论,,是否存在“谷值”,注意运用单调性即可.【题目详解】解:当时,有,,当,递减,递增,且.若时,有,则不存在“谷值”;若时,,则不存在“谷值”;若时,①,则不存在"谷值";②,则不存在"谷值";③,存在"谷值"且为.综上所述,的取值范围是故答案为:【题目点拨】本题考查新定义及运用,考查数列的单调性和运用,正确理解新定义是迅速解题的关键,是一道中档题.15、(答案不唯一)【解题分析】
确定圆心到直线的距离,即可求直线的方程.【题目详解】由题意得圆心坐标,半径,,∴圆心到直线的距离为,∴满足条件的一条直线的方程为.故答案为:(答案不唯一).【题目点拨】本题考查直线和圆的方程的应用,考查学生的计算能力,属于中档题.16、【解题分析】
由过点,求得a,代入,令,即可得到本题答案【题目详解】因为的图象过点,所以,所以,故.故答案为:-5【题目点拨】本题主要考查函数的解析式及利用解析式求值.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)周期,值域为;(2).【解题分析】
(1)利用二倍角降幂公式与辅助角公式将函数的解析式进行化简,利用周期公式求出函数的最小正周期,并求出函数的值域;(2)先由的值,求出角的值,然后由结合同角三角函数的基本关系以及两角和的余弦公式求出的值.【题目详解】(1)∵且,∴所求周期,值域为;(2)∵是的三个内角,,∴∴又,即,又∵,故,故.【题目点拨】本题考查三角函数与解三角形的综合问题,考查三角函数的基本性质以及三角形中的求值问题,求解三角函数的问题时,要将三角函数解析式进行化简,结合正余弦函数的基本性质求解,考查分析问题的能力和计算能力,属于中等题.18、(1);(2).【解题分析】
(1)构造数列等差数列求得的通项公式,再进行求和,再利用裂项相消求得;
(2)由题出现,故考虑用分为偶数和奇数两种情况进行计算.【题目详解】(1)由得,即,所以是以为首项,1为公差的等差数列,故,故.所以,故.
(2)当为偶数时,,当为奇数时,为偶数,
综上所述,当为偶数时,,当为奇数时,即.【题目点拨】本题主要考查了等差数列定义的应用,考查构造法求数列的通项公式与裂项求和及奇偶并项求和的方法,考查了分析问题的能力及逻辑推理能力,属于中档题.19、(1)见解析;(2)见解析【解题分析】
(1)通过证明,进而证明平面再证明平面平面;(2)取棱的中点,连接交于,结合三角形重心的性质证明,从而证明平面.【题目详解】(1)在直三棱柱中,由于平面,平面,所以平面平面.(或者得出)由于,是中点,所以.平面平面,平面,所以平面.而平面,于是.因为,,所以,所以.与相交,所以平面,平面所以平面平面(2)为棱的中点时,使得平面,证明:连接交于,连接.因为,为中线,所以为的重心,.从而.面,平面,所以平面【题目点拨】本题考查面面垂直的证明和线面平行的证明.面面垂直的证明要转化为证明线面垂直,线面平行的证明要转化为证明线线平行.20、(1)1;(2)40+24【解题分析】
由题设可知,几何体是一个高为4的四棱锥,其底面是长、宽分别为8和6的矩形,正侧面及其相对侧面均为底边长为8,高为h1的等腰三角形,左、右侧面均为底边长为6、高为h2的等腰三角形,分析出图形之后,再利用公式求解即可.【题目详解】解:由题设可知,几何体是一个高为4的四棱锥,其底面是长、宽分别为8和6的矩形,正侧面及其相对侧面均为底边长为8,高为h1的等腰三角形,左、右侧面均为底边长为6、高为h2的等腰三角形,如图所示.(1)几何体的体积为V•S矩形•h6×8×4=1.(2)正侧面及相对侧面底边上的高为:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 细胞研发面试题及答案
- 公务员省考资料分析与解读试题及答案
- 案场形体培训
- 一年级语文学科评估试题及答案
- 2024年宠物营养多样性与均衡知识试题及答案
- 计算机基础复习时间管理技巧及试题和答案
- 智界货车测试题及答案
- 2024汽车维修工考试过程中常见问题应对试题及答案
- 经典java面试题及答案解析
- 2024年计算机基础考试复习技术建议试题及答案
- 初中数学北师大八年级下册综合与实践-生活中的一次模型PPT
- 煤化工概述-课件
- 2021初中生命科学学业考试参考答案
- 《作文吹泡泡》-完整版课件
- 康熙帝课件(模板)
- DG-TJ 08-2002-2020 悬挑式脚手架安全技术标准 高质量清晰版
- 石化装置及产品英文名称及缩略词
- 浅谈在小学五六年级开展性教育的必要性
- (完整版)二十四山年月日时吉凶定局详解,
- 降落伞拉直阶段轨迹及拉直力计算
- 支撑掩护式液压支架总体方案及底座设计
评论
0/150
提交评论