版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市建平实验中学2024届数学高一下期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,,,,则的面积为A. B. C. D.2.若样本的平均数为10,其方差为2,则对于样本的下列结论正确的是A.平均数为20,方差为8 B.平均数为20,方差为10C.平均数为21,方差为8 D.平均数为21,方差为103.设为直线,是两个不同的平面,下列说法中正确的是()A.若,则B.若,则C.若,则D.若,则4.执行如图所示的程序框图,若输入,则输出()A.13 B.15 C.40 D.465.设等比数列的公比,前项和为,则()A. B. C. D.6.设,则的取值范围是()A. B. C. D.7.三棱锥中,底面是边长为2的正三角形,⊥底面,且,则此三棱锥外接球的半径为()A. B. C. D.8.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12.设其平均数为a,中位数为b,众数为c,则有().A. B. C. D.9.若角的终边与单位圆交于点,则()A. B. C. D.不存在10.函数的简图是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某小区拟对如图一直角△ABC区域进行改造,在三角形各边上选一点连成等边三角形,在其内建造文化景观.已知,则面积最小值为____12.设等差数列的前项和为,若,,则的最小值为______.13.给出下列四个命题:①在中,若,则;②已知点,则函数的图象上存在一点,使得;③函数是周期函数,且周期与有关,与无关;④设方程的解是,方程的解是,则.其中真命题的序号是______.(把你认为是真命题的序号都填上)14.某中学初中部共有名老师,高中部共有名教师,其性别比例如图所示,则该校女教师的人数为__________.15.若函数的反函数的图象过点,则________.16.已知函数的图象如下,则的值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,已知在侧棱垂直于底面三棱柱中,,,,,点是的中点.(1)求证:;(2)求证:(3)求三棱锥的体积.18.已知偶函数.(1)若方程有两不等实根,求的范围;(2)若在上的最小值为2,求的值.19.已知函数(1)求函数的定义域:(2)求函数的单调递减区间:(3)求函数了在区间上的最大值和最小值.20.在某单位的职工食堂中,食堂每天以3元/个的价格从面包店购进面包,然后以5元/个的价格出售.如果当天卖不完,剩下的面包以1元/个的价格全部卖给饲料加工厂.根据以往统计资料,得到食堂每天面包需求量的频率分布直方图如下图所示.食堂某天购进了80个面包,以x(单位:个,)表示面包的需求量,T(单位:元)表示利润.(1)求食堂面包需求量的平均数;(2)求T关于x的函数解析式;(3)根据直方图估计利润T不少于100元的概率.21.如图所示,平面平面,四边形为矩形,,点为的中点.(1)若,求三棱锥的体积;(2)点为上任意一点,在线段上是否存在点,使得?若存在,确定点的位置,并加以证明;若不存在,请说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】
利用三角形中的正弦定理求出角B,利用三角形内角和求出角C,再利用三角形的面积公式求出三角形的面积,求得结果.【题目详解】因为中,,,,由正弦定理得:,所以,所以,所以,所以,故选C.【题目点拨】该题所考查的是有关三角形面积的求解问题,在解题的过程中,需要注意根据题中所给的条件,应用正弦定理求得,从而求得,之后应用三角形面积公式求得结果.2、A【解题分析】
利用和差积的平均数和方差公式解答.【题目详解】由题得样本的平均数为,方差为.故选A【题目点拨】本题主要考查平均数和方差的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.3、C【解题分析】
画出长方体,按照选项的内容在长方体中找到相应的情况,即可得到答案【题目详解】对于选项A,在长方体中,任何一条棱都和它相对的两个平面平行,但这两个平面相交,所以A不正确;对于选项B,若,分别是长方体的上、下底面,在下底面所在平面中任选一条直线,都有,但,所以B不正确;对于选项D,在长方体中,令下底面为,左边侧面为,此时,在右边侧面中取一条对角线,则,但与不垂直,所以D不正确;对于选项C,设平面,且,因为,所以,又,所以,又,所以,所以C正确.【题目点拨】本题考查直线与平面的位置关系,属于简单题4、A【解题分析】
模拟程序运行即可.【题目详解】程序运行循环时,变量值为,不满足;,不满足;,满足,结束循环,输出.故选A.【题目点拨】本题考查程序框图,考查循环结构.解题时可模拟程序运行,观察变量值的变化,判断是否符合循环条件即可.5、C【解题分析】
利用等比数列的前n项和公式表示出,利用等比数列的通项公式表示出,计算即可得出答案。【题目详解】因为,所以故选C【题目点拨】本题考查等比数列的通项公式与前n项和公式,属于基础题。6、B【解题分析】
由同向不等式的可加性求解即可.【题目详解】解:因为,所以,又,,所以,故选:B.【题目点拨】本题考查了不等式的性质,属基础题.7、D【解题分析】
过的中心M作直线,则上任意点到的距离相等,过线段中点作平面,则面上的点到的距离相等,平面与的交点即为球心O,半径,故选D.考点:求解三棱锥外接球问题.点评:此题的关键是找到球心的位置(球心到4个顶点距离相等).8、B【解题分析】
根据所给数据,分别求出平均数为a,中位数为b,众数为c,然后进行比较可得选项.【题目详解】,中位数为,众数为.故选:B.【题目点拨】本题主要考查统计量的求解,明确平均数、中位数、众数的求解方法是求解的关键,侧重考查数学运算的核心素养.9、B【解题分析】
由三角函数的定义可得:,得解.【题目详解】解:在单位圆中,,故选B.【题目点拨】本题考查了三角函数的定义,属基础题.10、D【解题分析】
变形为,求出周期排除两个选项,再由函数值正负排除一个,最后一个为正确选项.【题目详解】函数的周期是,排除AB,又时,,排除C.只有D满足.故选:D.【题目点拨】本题考查由函数解析式选图象,可通过研究函数的性质如单调性、奇偶性、周期性、对称性等排除某些选项,还可求出特殊值,特殊点,函数值的正负,函数值的变化趋势排除一些选项,从而得出正确选项.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
设,然后分别表示,利用正弦定理建立等式用表示,从而利用三角函数的性质得到的最小值,从而得到面积的最小值.【题目详解】因为,所以,显然,,设,则,且,则,所以,在中,由正弦定理可得:,求得,其中,则,因为,所以当时,取得最大值1,则的最小值为,所以面积最小值为,【题目点拨】本题主要考查了利用三角函数求解实际问题的最值,涉及到正弦定理的应用,属于难题.对于这类型题,关键是能够选取恰当的参数表示需求的量,从而建立相关的函数,利用函数的性质求解最值.12、【解题分析】
用基本量法求出数列的通项公式,由通项公式可得取最小值时的值,从而得的最小值.【题目详解】设数列公差为,则由已知得,解得,∴,,,又,、∴的最小值为.故答案为:..【题目点拨】本题考查等差数列的前项和的最值.首项为负且递增的等差数列,满足的最大的使得最小,首项为正且递减的等差数列,满足的最大的使得最大,当然也可把表示为的二次函数,由二次函数知识求得最值.13、①③【解题分析】
①利用三角形的内角和定理以及正弦函数的单调性进行判断;②根据余弦函数的有界性可进行判断;③利用周期函数的定义,结合余弦函数的周期性进行判断;④根据互为反函数图象的对称性进行判断.【题目详解】①在中,若,则,则,由于正弦函数在区间上为增函数,所以,故命题①正确;②已知点,则函数,所以该函数图象上不存在一点,使得,故命题②错误;③函数的是周期函数,当时,,该函数的周期为.当时,,该函数的周期为.所以,函数的周期与有关,与无关,命题③正确;④设方程的解是,方程的解是,由,可得,由,可得,则可视为函数与直线交点的横坐标,可视为函数与直线交点的横坐标,如下图所示:联立,得,可得点,由于函数的图象与函数的图象关于直线对称,则直线与函数和函数图象的两个交点关于点对称,所以,命题④错误.故答案为:①③.【题目点拨】本题考查三角函数的周期、正弦函数单调性的应用、互为反函数图象的对称性的应用以及余弦函数有界性的应用,考查分析问题和解决问题的能力,属于中等题.14、【解题分析】
由初中部、高中部男女比例的饼图,初中部女老师占70%,高中部女老师占40%,分别算出女老师人数,再相加.【题目详解】初中部女老师占70%,高中部女老师占40%,该校女教师的人数为.【题目点拨】考查统计中读图能力,从图中提取基本信息的基本能力.15、【解题分析】
由反函数的性质可得的图象过,将代入,即可得结果.【题目详解】的反函数的图象过点,的图象过,故答案为.【题目点拨】本题主要考查反函数的基本性质,意在考查对基础知识掌握的熟练程度,属于基础题.16、【解题分析】
由函数的图象的顶点坐标求出,由半个周期求出,最后将特殊点的坐标求代入解析式,即可求得的值.【题目详解】解:由图象可得,,得.,将点代入函数解析式,得,,,又因为,所以故答案为:【题目点拨】本题考查由的部分图象确定其解析式.(1)根据函数的最高点的坐标确定(2)根据函数零点的坐标确定函数的周期求(3)利用最值点的坐标同时求的取值,即可得到函数的解析式.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析;(3)8.【解题分析】试题分析:(1)由勾股定理得,由面得到,从而得到面,故;(2)连接交于点,则为的中位线,得到∥,从而得到∥面;(3)过作垂足为,面,面积法求,求出三角形的面积,代入体积公式进行运算.试题解析:(1)证明:在中,由勾股定理得为直角三角形,即.又面,,,面,.(2)证明:设交于点,则为的中点,连接,则为的中位线,则在中,∥,又面,则∥面.(3)在中过作垂足为,由面⊥面知,面,.而,,.考点:直线与平面平行的判定;棱柱、棱锥、棱台的体积.18、(1);(2)或.【解题分析】
(1)由偶函数的定义,利用,求得的值,再由对数函数的单调性,结合题设条件,即可求解实数的范围;(2)利用换元法和对勾函数的单调性,以及二次函数的闭区间上的求法,分类讨论对称轴和区间的关系,即可求解.【题目详解】(1)因为,所以的定义域为,因为是偶函数,即,所以,故,所以,即方程的解为一切实数,所以,因为,且,所以原方程转化为,令,,所以所以在上是减函数,是增函数,当时,使成立的有两个,又由知,与一一对应,故当时,有两不等实根;(2)因为,所以,所以,令,则,令,设,则,因为,所以,即在上是增函数,所以,设,则.(i)当时,的最小值为,所以,解得,或4(舍去);(ii)当时,的最小值为,不合题意;(iii)当时,的最小值为,所以,解得,或(舍去).综上知,或.【题目点拨】本题主要考查了函数的综合应用,其中解答中涉及到函数的奇偶性,对数函数的图象与性质,以及换元法和分类讨论思想的应用,试题综合性强,属于难题,着重考查了分析问题和解答问题的能力,以及推理与运算能力.19、(1).(2),.(3),.【解题分析】
(1)根据分母不等于求出函数的定义域.(2)化简函数的表达式,利用正弦函数的单调减区间求解函数的单调减区间即可.(3)通过满足求出相位的范围,利用正弦函数的值域,求解函数的最大值和最小值.【题目详解】解:(1)函数的定义域为:,即,(2),令且,解得:,即所以的单调递减区间:,.(3)由,可得:,当,即:时,当,即:时,【题目点拨】本题考查三角函数的最值以及三角函数的化简与应用,两角和与差的三角函数的应用考查计算能力.20、(1)84;(2);(3)【解题分析】
(1)每个小矩形的面积乘以该组中间值,所得数据求和就是平均数;(2)根据需求量分段表示函数关系;(3)根据(1)利润T不少于100元时,即,即,求出其频率,即可估计概率.【题目详解】(1)估计食堂面包需求量的平均数为:(2)解:由题意,当时,利润,当时,利润,即T关于x的函数解析式(3)解:由题意,设利润T不少于100元为事件A,由(1)知,利润T不少于100元时,即,即,由直方图可知,当时,所求概率为【题目点拨】此题考查频率分布直方图,根据频率分布直方图求平均数,计算频率,以及建立函数模型解决实际问题,综合性比较强.21、(1);(2)存在,为中点,证明见解析.【解题分析】
(1)先根据面积垂直的性质得到平面;再由题中数据,结合棱锥体积公式,即可求出结果;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大众传媒的变迁-课件
- 湖南省张家界市(2024年-2025年小学六年级语文)统编版竞赛题(上学期)试卷及答案
- 廊坊卫生职业学院《数字信号处理及实践》2023-2024学年第一学期期末试卷
- 人工智能技术赋能多模态大学英语阅读教学模式的探究
- 兰州职业技术学院《导游基础》2023-2024学年第一学期期末试卷
- 2025年聊城道路货运输从业资格证模拟考试题库
- 2025年十堰c1货运从业资格证考试题下载
- 兰州石化职业技术大学《项目决策分析与评价》2023-2024学年第一学期期末试卷
- 2025年甘肃货运从业资格证考试模拟题答案
- 兰州理工大学《海洋生物资源的开发与利用》2023-2024学年第一学期期末试卷
- 《高效销售技巧课件:打造销售精英》
- 时间管理培训内容
- 老年友善医院培训计划及课件
- 武汉理工建筑工程概预算课程设计(新)
- 运动训练学-运动训练方法与手段
- 信息经济学案例教学资料及内容
- ESD静电防护检测及管控标准
- 幼儿园优质公开课:大班社会活动《独一无二的我》课件PPT
- 争做新时代好少年主题班会课件(共29张PPT)
- 合格证、出厂检验报告、出厂质量证明资料粘贴表
- 教师点评心理剧
评论
0/150
提交评论