2024届河南省洛阳市孟津县第二高级中学数学高一下期末统考模拟试题含解析_第1页
2024届河南省洛阳市孟津县第二高级中学数学高一下期末统考模拟试题含解析_第2页
2024届河南省洛阳市孟津县第二高级中学数学高一下期末统考模拟试题含解析_第3页
2024届河南省洛阳市孟津县第二高级中学数学高一下期末统考模拟试题含解析_第4页
2024届河南省洛阳市孟津县第二高级中学数学高一下期末统考模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河南省洛阳市孟津县第二高级中学数学高一下期末统考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设等比数列的前项和为,若,公比,则的值为()A.15 B.16 C.30 D.312.已知在中,,且,则的值为()A. B. C. D.3.已知圆柱的轴截面为正方形,且该圆柱的侧面积为,则该圆柱的体积为A. B. C. D.4.设函数,则()A.在单调递增,且其图象关于直线对称B.在单调递增,且其图象关于直线对称C.在单调递减,且其图象关于直线对称D.在单调递增,且其图象关于直线对称5.在锐角三角形中,,,分别为内角,,的对边,已知,,,则的面积为()A. B. C. D.6.已知在中,为线段上一点,且,若,则()A. B. C. D.7.已知,,则()A. B. C. D.8.《九章算术》中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边长分别为5步和12步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是()A. B. C. D.9.已知、是圆:上的两个动点,,,若是线段的中点,则的值为()A. B. C. D.10.设,是两条不同的直线,,,是三个不同的平面,给出下列四个命题:①若,,则②若,,,则③若,,则④若,,则其中正确命题的序号是()A.①和② B.②和③ C.③和④ D.①和④二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最小正周期是______.12.已知正实数a,b满足2a+b=1,则1a13.已知数列的通项公式为,数列的通项公式为,设,若在数列中,对任意恒成立,则实数的取值范围是_________.14.若点,关于直线l对称,那么直线l的方程为________.15.若数列满足,,,则______.16.已知为锐角,则_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.中,角的对边分别为,且.(I)求的值;(II)求的值.18.某校团委会组织某班以小组为单位利用周末时间进行一次社会实践活动,每个小组有5名同学,在活动结束后,学校团委会对该班的所有同学进行了测试,该班的A,B两个小组所有同学得分(百分制)的茎叶图如图所示,其中B组一同学的分数已被污损,但知道B组学生的平均分比A组同学的平均分高一分.(1)若在B组学生中随机挑选1人,求其得分超过86分的概率;(2)现从A、B两组学生中分别随机抽取1名同学,设其分数分别为m、n,求的概率.19.如图,已知平面是正三角形,.(1)求证:平面平面;(2)求二面角的正切值.20.已知为锐角三角形,内角A,B,C的对边分别为a,b,c,若.(1)求C;(2)若,且的面积为,求的周长.21.为了了解某省各景区在大众中的熟知度,随机从本省岁的人群中抽取了人,得到各年龄段人数的频率分布直方图如图所示,现让他们回答问题“该省有哪几个国家级旅游景区?”,统计结果如下表所示:组号分组回答正确的人数回答正确的人数占本组的频率第组第组第组第组第组(1)分别求出的值;(2)从第组回答正确的人中用分层抽样的方法抽取人,求第组每组抽取的人数;(3)在(2)中抽取的人中随机抽取人,求所抽取的人中恰好没有年龄段在的概率

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】

直接利用等比数列前n项和公式求.【题目详解】由题得.故选A【题目点拨】本题主要考查等比数列求和,意在考查学生对该知识的理解掌握水平和分析推理能力.2、C【解题分析】

先确定D位置,根据向量的三角形法则,将用,表示出来得到答案.【题目详解】故答案选C【题目点拨】本题考查了向量的加减,没有注意向量方向是容易犯的错误.3、C【解题分析】

设圆柱的底面半径,该圆柱的高为,利用侧面积得到半径,再计算体积.【题目详解】设圆柱的底面半径.因为圆柱的轴截面为正方形,所以该圆柱的高为因为该圆柱的侧面积为,所以,解得,故该圆柱的体积为.故答案选C【题目点拨】本题考查了圆柱的体积,意在考查学生的计算能力和空间想象能力.4、B【解题分析】

先将函数化简,再根据三角函数的图像性质判断单调性和对称性,从而选择答案.【题目详解】

根据选项有,当时,在在上单调递增.又即为的对称轴.当时,为的对称轴.故选:B【题目点拨】本题考查的单调性和对称性质,属于中档题.5、D【解题分析】由结合题意可得:,故,△ABC为锐角三角形,则,由题意结合三角函数的性质有:,则:,即:,则,由正弦定理有:,故.本题选择D选项.点睛:在解决三角形问题中,求解角度值一般应用余弦定理,因为余弦定理在内具有单调性,求解面积常用面积公式,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来.6、C【解题分析】

首先,由已知条件可知,再有,这样可用表示出.【题目详解】∵,∴,,∴,∴.故选C.【题目点拨】本题考查平面向量基本定理,解题时用向量加减法表示出,然后用基底表示即可.7、C【解题分析】

由放缩法可得出,再利用特殊值法以及不等式的基本性质可判断各选项中不等式的正误.【题目详解】,,可得.取,,,则A、D选项中的不等式不成立;取,,,则B选项中的不等式不成立;且,由不等式的基本性质得,C选项中的不等式成立.故选:C.【题目点拨】本题考查不等式正误的判断,一般利用不等式的性质或特殊值法进行判断,考查推理能力,属于中等题.8、C【解题分析】

本题首先可以根据直角三角形的三边长求出三角形的内切圆半径,然后分别计算出内切圆和三角形的面积,最后通过几何概型的概率计算公式即可得出答案.【题目详解】如图所示,直角三角形的斜边长为,设内切圆的半径为,则,解得.所以内切圆的面积为,所以豆子落在内切圆外部的概率,故选C.【题目点拨】本题主要考查“面积型”的几何概型,属于中档题.解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时,忽视验证事件是否等可能性导致错误.9、A【解题分析】由题意得,所以,选A.10、A【解题分析】

根据线面平行性质定理,结合线面垂直的定义,可得①是真命题;根据面面平行的性质结合线面垂直的性质,可得②是真命题;在正方体中举出反例,可得平行于同一个平面的两条直线不一定平行,垂直于同一个平面和两个平面也不一定平行,可得③④不正确.由此可得本题的答案.【题目详解】解:对于①,因为,所以经过作平面,使,可得,又因为,,所以,结合得.由此可得①是真命题;对于②,因为且,所以,结合,可得,故②是真命题;对于③,设直线、是位于正方体上底面所在平面内的相交直线,而平面是正方体下底面所在的平面,则有且成立,但不能推出,故③不正确;对于④,设平面、、是位于正方体经过同一个顶点的三个面,则有且,但是,推不出,故④不正确.综上所述,其中正确命题的序号是①和②故选:【题目点拨】本题给出关于空间线面位置关系的命题,要我们找出其中的真命题,着重考查了线面平行、面面平行的性质和线面垂直、面面垂直的判定与性质等知识,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

由二倍角的余弦函数公式化简解析式可得,根据三角函数的周期性及其求法即可得解.【题目详解】.由周期公式可得:.故答案为【题目点拨】本题主要考查了二倍角的余弦函数公式的应用,考查了三角函数的周期性及其求法,属于基本知识的考查.12、9【解题分析】

利用“乘1法”和基本不等式即可得出.【题目详解】解:∵正实数a,b满足2a+b=1,∴1a+12b=(2a+b∴1a+故答案为:9【题目点拨】本题考查了“乘1法”和基本不等式的应用,属于基础题.13、【解题分析】

首先分析题意,可知是取和中的最大值,且是该数列中的最小项,结合数列的单调性和数列的单调性可得出或,代入数列的通项公式即可求出实数的取值范围.【题目详解】由题意可知,是取和中的最大值,且是数列中的最小项.若,则,则前面不会有数列的项,由于数列是单调递减数列,数列是单调递增数列.,数列单调递减,当时,必有,即.此时,应有,,即,解得.,即,得,此时;若,则,同理,前面不能有数列的项,即,当时,数列单调递增,数列单调递减,.当时,,由,即,解得.由,得,解得,此时.综上所述,实数的取值范围是.故答案为:.【题目点拨】本题考查利用数列的最小项求参数的取值范围,同时也考查了数列中的新定义,解题的关键就是要分析出数列的单调性,利用一些特殊项的大小关系得出不等式组进行求解,考查分析问题和解决问题的能力,属于难题.14、【解题分析】

利用直线垂直求出对称轴斜率,利用中点坐标公式求出中点,再由点斜式可得结果.【题目详解】求得,∵点,关于直线l对称,∴直线l的斜率1,直线l过AB的中点,∴直线l的方程为,即.故答案为:.【题目点拨】本题主要考查直线垂直的性质,考查了直线点斜式方程的应用,属于基础题.15、【解题分析】

由,化简得,则为等差数列,结合已知条件得.【题目详解】由,化简得,且,,得,所以是以为首项,以为公差的等差数列,所以,即故答案为:【题目点拨】本题考查了数列的递推式,考查了判断数列是等差数列的方法,属于中档题.16、【解题分析】

利用同角三角函数的基本关系得,再根据角度关系,利用诱导公式即可得答案.【题目详解】∵且,∴;∵,∴.故答案为:.【题目点拨】本题考查同角三角函数的基本关系、诱导公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意三角函数的符号问题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)5【解题分析】试题分析:(1)依题意,利用正弦定理及二倍角的正弦即可求得cosA的值;(2)易求sinA=,sinB=,从而利用两角和的正弦可求得sin(A+B)=,在△ABC中,此即sinC的值,利用正弦定理可求得c的值.试题解析:(1)由正弦定理可得,即:,∴,∴.(2由(1),且,∴,∴,∴==.由正弦定理可得:,∴.18、(1)(2)【解题分析】

(1)求出A组学生的平均分可得B组学生的平均分,设被污损的分数为X,列方程得X,从而得到B组学生的分数,其中有3人分数超过86分,由此能求出B组学生中随机挑选1人,其得分超过86分概率.(2)利用列举法写出在A、B两组学生中随机抽取1名同学,其分数组成的所有基本事件(m,n),利用古典概型求出|m﹣n|≥8的概率.【题目详解】(1)A组学生的平均分为,所以B组学生的平均分为86分设被污损的分数为,则,解得所以B组学生的分数为91、93、83、88、75,其中有3人分数超过86分在B组学生中随机挑选1人,其得分超过86分概率为.(2)A组学生的分数分别是94、80、86、88、77,B组学生的分数为91、93、83、88、75,在A、B两组学生中随机抽取1名同学,其分数组成的基本事件(m,n),有(94,91),(94,93),(94,83),(94,88),(94,75),(80,91),(80,93),(80,83),(80,88),(80,75),(86,91),(86,93),(86,83),(86,88),(86,75),(88,91),(88,93),(88,83),(88,88),(88,75),(77,91),(77,93),(77,83),(77,88),(77,75),共25个随机各抽取1名同学的分数满足的基本事件有(94,83),(94,75),(80,91),(80,93),(80,88),(86,75),(88,75),(77,91),(77,93),(77,88),共10个∴的概率为.【题目点拨】本题考查概率的求法,考查古典概型、列举法、茎叶图等基础知识,考查了推理能力与计算能力,是基础题.19、(1)证明见解析;(2).【解题分析】

(1)取的中点的中点,证明,由根据线面垂直判定定理可得,可得平面,结合面面垂直的判定定理,可得平面平面;

(2)过作,连接BM,可以得到为二面角的平面角,解三角形即可求出二面角的正切值.【题目详解】解:(1)取BE的中点F.

AE的中点G,连接GD,CF∴,GF∥AB又∵,CD∥AB∴CD∥GF,CD=GF,∴CFGD是平行四边形,∴CF∥GD,又∵CF⊥BF,CF⊥AB∴CF⊥平面ABE∵CF∥DG∴DG⊥平面ABE,∵DG⊂平面ABE∴平面ABE⊥平面ADE;(2)∵AB=BE,∴AE⊥BG,∴BG⊥平面ADE,过G作GM⊥DE,连接BM,则BM⊥DE,则∠BMG为二面角A−DE−B的平面角,设AB=BC=2CD=2,则,在Rt△DCE中,CD=1,CE=2,∴,又,由DE⋅GM=DG⋅EG得,所以,故面角的正切值为:.【题目点拨】本题考查了面面垂直的判定定理及二面角的平面角的作法,重点考查了空间想象能力,属中档题.20、(1);(2).【解题分析】

(1)根据正弦定理可求,利用特殊角三角函数可求C;(2)由和的面积公式,可求,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论