版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省示范中学2024届高一数学第二学期期末经典试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某赛季甲、乙两名篮球运动员5场比赛得分的茎叶图如图所示,已知甲得分的极差为32,乙得分的平均值为24,则下列结论错误的是()A.B.甲得分的方差是736C.乙得分的中位数和众数都为26D.乙得分的方差小于甲得分的方差2.如图,在坡度一定的山坡处测得山顶上一建筑物的顶端对于山坡的斜度为,向山顶前进100米到达后,又测得对于山坡的斜度为,若米,山坡对于地平面的坡角为,则()A. B. C. D.3.我国古代著名的周髀算经中提到:凡八节二十四气,气损益九寸九分六分分之一;冬至晷长一丈三尺五寸,夏至晷长一尺六寸意思是:一年有二十四个节气,每相邻两个节气之间的日影长度差为分;且“冬至”时日影长度最大,为1350分;“夏至”时日影长度最小,为160分则“立春”时日影长度为A.分 B.分 C.分 D.分4.经过点,和直线相切,且圆心在直线上的圆方程为()A. B.C. D.5.设向量满足,且,则向量在向量方向上的投影为A.1 B. C. D.6.从装有红球、白球和黑球各2个的口袋内一次取出2个球,则与事件“两球都为白球”互斥而非对立的事件是以下事件“①两球都不是白球;②两球恰有一个白球;③两球至少有一个白球”中的()A.①② B.①③C.②③ D.①②③7.在中,内角,,的对边分别为,,,若,,,则的最小角为()A. B. C. D.8.在等差数列中,为其前n项和,若,则()A.60 B.75 C.90 D.1059.已知是所在平面内一点,且满足,则为A.等腰三角形 B.直角三角形 C.等边三角形 D.等腰直角三角形10.在中,,则是()A.等边三角形 B.直角三角形C.等腰三角形 D.等腰直角三角形二、填空题:本大题共6小题,每小题5分,共30分。11.己知函数,有以下结论:①的图象关于直线轴对称②在区间上单调递减③的一个对称中心是④的最大值为则上述说法正确的序号为__________(请填上所有正确序号).12.如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆,设,则阴影部分的面积是__________.13.已知向量,,且与垂直,则的值为______.14.若A(-2,3),B(3,-2),C(4,m)三点共线则m的值为________.15.若圆与圆的公共弦长为,则________.16.已知一个铁球的体积为,则该铁球的表面积为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列满足,.(1)证明:数列是等差数列,并求数列的通项公式;(2)设,数列的前n项和为,求使不等式<对一切恒成立的实数的范围.18.某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价为3元,根据以往的经验售价为4元时,可卖出280桶;若销售单价每增加1元,日均销售量就减少40桶,则这个经营部怎样定价才能获得最大利润?最大利润是多少?19.设数列满足,.(1)求数列的通项公式;(2)令,求数列的前项和.20.已知圆心为的圆过点,且与直线相切于点。(1)求圆的方程;(2)已知点,且对于圆上任一点,线段上存在异于点的一点,使得(为常数),试判断使的面积等于4的点有几个,并说明理由。21.已知数列满足,.(1)求证:数列是等比数列;(2)求数列的通项公式.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
根据题意,依次分析选项,综合即可得答案.【题目详解】根据题意,依次分析选项:对于A,甲得分的极差为32,30+x﹣6=32,解得:x=8,A正确,对于B,甲得分的平均值为,其方差为,B错误;对于C,乙的数据为:12、25、26、26、31,其中位数、众数都是26,C正确,对于D,乙得分比较集中,则乙得分的方差小于甲得分的方差,D正确;故选:B.【题目点拨】本题考查茎叶图的应用,涉及数据极差、平均数、中位数、众数、方差的计算,属于基础题.2、C【解题分析】
先在中利用正弦定理求出BC的值,再在中由正弦定理解出,再计算.【题目详解】在中,,在中,,又∵,∴.故选C.【题目点拨】本题考查解三角形在实际中的应用,属于基础题.3、B【解题分析】
首先“冬至”时日影长度最大,为1350分,“夏至”时日影长度最小,为160分,即可求出,进而求出立春”时日影长度为.【题目详解】解:一年有二十四个节气,每相邻两个节气之间的日影长度差为分,且“冬至”时日影长度最大,为1350分;“夏至”时日影长度最小,为160分.,解得,“立春”时日影长度为:分.故选B.【题目点拨】本题考查等差数列的性质等基础知识,考查运算求解能力,利用等差数列的性质直接求解.4、B【解题分析】
设出圆心坐标,由圆心到切线的距离和它到点的距离都是半径可求解.【题目详解】由题意设圆心为,则,解得,即圆心为,半径为.圆方程为.故选:B.【题目点拨】本题考查求圆的标准方程,考查直线与圆的位置关系.求出圆心坐标与半径是求圆标准方程的基本方法.5、D【解题分析】
先由题中条件,求出向量的数量积,再由向量数量积的几何意义,即可求出投影.【题目详解】因为,,所以,所以,故向量在向量方向上的投影为.故选D【题目点拨】本题主要考查平面向量的数量积,熟记平面向量数量积的几何意义即可,属于常考题型.6、A【解题分析】试题分析:结合互斥事件和对立事件的定义,即可得出结论解:根据题意,结合互斥事件、对立事件的定义可得,事件“两球都为白球”和事件“两球都不是白球”;事件“两球都为白球”和事件“两球中恰有一白球”;不可能同时发生,故它们是互斥事件.但这两个事件不是对立事件,因为他们的和事件不是必然事件.故选A考点:互斥事件与对立事件.7、A【解题分析】
由三角形大边对大角可知所求角为角,利用余弦定理可求得,进而得到结果.【题目详解】的最小角为角,则故选:【题目点拨】本题考查利用余弦定理解三角形的问题,关键是明确三角形中大边对大角的特点,进而根据余弦定理求得所求角的余弦值.8、B【解题分析】
由条件,利用等差数列下标和性质可得,进而得到结果.【题目详解】,即,而,故选B.【题目点拨】本题考查等差数列的性质,考查运算能力与推理能力,属于中档题.9、B【解题分析】
由向量的减法法则,将题中等式化简得,进而得到,由此可得以为邻边的平行四边形为矩形,得的形状是直角三角形。【题目详解】因为,,因为,所以,因为,所以,由此可得以为邻边的平行四边形为矩形,所以,得的形状是直角三角形。【题目点拨】本题给出向量等式,判断三角形的形状,着重考查平面向量的加法、减法法则和三角形的形状判断等知识。10、C【解题分析】
由二倍角公式可得,,再根据诱导公式可得,然后利用两角和与差的余弦公式,即可将化简成,所以,即可求得答案.【题目详解】因为,,所以,,即,.故选:C.【题目点拨】本题主要考查利用二倍角公式,两角和与差的余弦公式进行三角恒等变换,意在考查学生的数学运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、②④【解题分析】
根据三角函数性质,逐一判断选项得到答案.【题目详解】,根据图像知:①的图象关于直线轴对称,错误②在区间上单调递减,正确③的一个对称中心是,错误④的最大值为,正确故答案为②④【题目点拨】本题考查了三角函数的化简,三角函数的图像,三角函数性质,意在考查学生对于三角函数的综合理解和应用.12、【解题分析】
:设两个半圆交于点,连接,可得直角扇形的面积等于以为直径的两个半圆的面积之和,平分,可得阴影部分的面积.【题目详解】解:设两个半圆交于点,连接,,∴直角扇形的面积等于以为直径的两个半圆的面积之和,由对称性可得:平分,故阴影部分的面积是:.故答案为:.【题目点拨】本题主要考查扇形的计算公式,相对不难.13、【解题分析】
根据与垂直即可得出,进行数量积的坐标运算即可求出x的值.【题目详解】;;.故答案为.【题目点拨】本题考查向量垂直的充要条件,以及向量数量积的坐标运算,属于基础题.14、-3【解题分析】
根据三点共线与斜率的关系即可得出.【题目详解】kAB=-2-33-(-2)=-1,k∵A(-2,3),B(3,-2),C(4,m)三点共线,∴﹣1=-3-m6,解得m=故答案为-3.【题目点拨】本题考查了三点共线与斜率的关系,考查了推理能力与计算能力,属于基础题.15、【解题分析】将两个方程两边相减可得,即代入可得,则公共弦长为,所以,解之得,应填.16、.【解题分析】
通过球的体积求出球的半径,然后求出球的表面积.【题目详解】球的体积为球的半径球的表面积为:故答案为:【题目点拨】本题考查球的表面积与体积的求法,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析,;(2)【解题分析】
(1)对递推式两边取倒数化简,即可得出,利用等差数列的通项公式得出,再得出;(2)由(1)得,再使用裂项相消法求出,使用不等式得出的范围,从而得出的范围.【题目详解】(1)∵,两边取倒数,∴,即,又,∴数列是以1为首项,2为公差的等差数列,∴,∴.(2)由(1)得,∴=,要使不等式Sn<对一切恒成立,则.∴的范围为:.【题目点拨】本题考查了构造法求等差数列的通项公式,裂项相消法求数列的和,属于中档题.18、定价为每桶7元,最大利润为440元.【解题分析】
若设定价在进价的基础上增加元,日销售利润为元,则,其中,整理函数,可得取何值时,有最大值,即获得最大利润【题目详解】设定价在进价的基础上增加元,日销售利润为元,则,由于,且,所以,;即,.所以,当时,取最大值.此时售价为,此时的最大利润为440元.【题目点拨】本题主要考查二次函数的应用,意在考查学生对该知识的理解掌握水平,属于基础题.19、【解题分析】试题分析:(1)结合数列递推公式形式可知采用累和法求数列的通项公式,求解时需结合等比数列求和公式;(2)由得数列的通项公式为,求和时采用错位相减法,在的展开式中两边同乘以4后,两式相减可得到试题解析:(1)由已知,当时,==,.而,所以数列的通项公式为.(2)由知…①……7分从而……②①②得,即.考点:1.累和法求数列通项公式;2.错位相减法求和20、(1)(2)使的面积等于4的点有2个【解题分析】
(1)利用条件设圆的标准方程,由圆过点求t,确定圆方程.(2)设,由确定阿波罗尼斯圆方程,与圆C为同一圆,可得,求出N点的坐标,建立ON方程,,再利用面积求点P到直线的距离,判断与ON平行且距离为的两条直线与圆C的位置关系可得结论.【题目详解】(1)依题意可设圆心坐标为,则半径为,圆的方程可写成,因为圆过点,∴,∴,则圆的方程为。(2)由题知,直线的方程为,设满足题意,设,则,所以,则,因为上式对任意恒成立,所以,且,解得或(舍去,与重合)。所以点,则,直线方程为,点到直线的距离,若存在点使的面积等于4,则,∴。①当点在直线的上方时,点到直线的距离的取值范围为,∵,∴当点在直线的上方时,使的面积等于4的点有2个;②当点在直线的下方时,点到直线的距离的取值范围为,∵,∴当点在直线的下方时,使的面积等于4的点有0个,综上可知,使的面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 路灯工程招标文件示例
- 软件技术应用与实施合同
- 软件服务及技术支持协议
- 软件购买及许可协议样本设计
- 轻松学好语文的方法
- 轻骨料混凝土购买合同
- 违反保证书与法律约束
- 酒店招标文件揭秘
- 采购商设备采购合同
- 钢筋植筋合同格式
- 《月亮与六便士》分享PPT
- 热熔型标线施划、清除及交通标志施工方案
- 逻辑学导论学习通超星课后章节答案期末考试题库2023年
- 办公自动化高级应用教程(Office2016)PPT完整全套教学课件
- 教师中级职称工作总结范文(二篇)
- 《体育与健康基础知识-体育活动与营养》(教学设计)-2022-2023学年体育与健康五年级上册 人教版
- Pixhawk飞控概览、快速入门
- 前庭性偏头痛诊断
- 部编版四年级语文下册第一单元大单元作业设计
- 一年级上册数学说课稿24:得数在5以内的加法-苏教版
- 《使市场在资源配置中起决定作用》
评论
0/150
提交评论