浙江省宁波市第七中学2024届高一数学第二学期期末检测模拟试题含解析_第1页
浙江省宁波市第七中学2024届高一数学第二学期期末检测模拟试题含解析_第2页
浙江省宁波市第七中学2024届高一数学第二学期期末检测模拟试题含解析_第3页
浙江省宁波市第七中学2024届高一数学第二学期期末检测模拟试题含解析_第4页
浙江省宁波市第七中学2024届高一数学第二学期期末检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省宁波市第七中学2024届高一数学第二学期期末检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,,若是与的等比中项,则的最小值为()A. B. C.3 D.2.已知正四棱锥的底面边长为2,侧棱长为,则该正四棱锥的体积为()A. B. C. D.3.过点作抛物线的两条切线,切点为,则的面积为()A. B. C. D.4.已知在中,为线段上一点,且,若,则()A. B. C. D.5.某校高二理(1)班学习兴趣小组为了调查学生喜欢数学课的人数比例,设计了如下调查方法:(1)在本校中随机抽取100名学生,并编号1,2,3,…,100;(2)在箱内放置了两个黄球和三个红球,让抽取到的100名学生分别从箱中随机摸出一球,记住其颜色并放回;(3)请下列两类学生站出来,一是摸到黄球且编号数为奇数的学生,二是摸到红球且不喜欢数学课的学生。若共有32名学生站出来,那么请用统计的知识估计该校学生中喜欢数学课的人数比例大约是()A.80% B.85% C.90% D.92%6.中,下列结论:①若,则,②,③,④若是锐角三角形,则,其中正确的个数是()A.1 B.2 C.3 D.47.在等差数列中,已知=2,=16,则为()A.8 B.128 C.28 D.148.已知向量,,若,则的值为()A. B.1 C. D.9.设,若关于的不等式在区间上有解,则()A. B. C. D.10.下列命题中不正确的是()A.平面∥平面,一条直线平行于平面,则一定平行于平面B.平面∥平面,则内的任意一条直线都平行于平面C.一个三角形有两条边所在的直线分别平行于一个平面,那么该三角形所在的平面与这个平面平行D.分别在两个平行平面内的两条直线只能是平行直线或异面直线二、填空题:本大题共6小题,每小题5分,共30分。11.数列满足,则等于______.12.已知点P(tanα,cosα)在第三象限,则角α的终边在第________象限.13.在数列中,,,则________.14.已知函数的图象关于点对称,记在区间的最大值为,且在()上单调递增,则实数的最小值是__________.15.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.16.若,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知夹角为,且,,求:(1);(2)与的夹角.18.的内角的对边分别为,已知.(1)求;(2)若为锐角三角形,且,求面积的取值范围.19.在△ABC中,角A,B,C的对边分别为a,b,c,且a2+c2﹣b2=mac,其中m∈R.(1)若m=1,a=1,c=,求△ABC的面积;(2)若m=,A=2B,a=,求b.20.已知直线恒过定点,圆经过点和定点,且圆心在直线上.(1)求圆的方程;(2)已知点为圆直径的一个端点,若另一端点为点,问轴上是否存在一点,使得为直角三角形,若存在,求出的值;若不存在,说明理由.21.等差数列,等比数列,,,如果,(1)求的通项公式(2),求的最大项的值(3)将化简,表示为关于的函数解析式

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

先由题意求出,再结合基本不等式,即可求出结果.【题目详解】因为是与的等比中项,所以,故,因为,,所以,当且仅当,即时,取等号;故选C【题目点拨】本题主要考查基本不等式的应用,熟记基本不等式即可,属于常考题型.2、D【解题分析】

求出正四棱锥的高后可求其体积.【题目详解】正四棱锥底面的对角线的长度为,故正四棱锥的高为,所以体积为,故选D.【题目点拨】正棱锥中,棱锥的高、斜高、侧棱和底面外接圆的半径可构成四个直角三角形,它们沟通了棱锥各个几何量之间的关系,解题中注意利用它们实现不同几何量之间的联系.3、B【解题分析】设抛物线过点的切线方程为,即,将点代入可得,同理都满足方程,即为直线的方程为,与抛物线联立,可得,点到直线的距离,则的面积为,故选B.【方法点晴】本题主要考查利用导数求曲线切线方程以及弦长公式与点到直线距离公式,属于难题.求曲线切线方程的一般步骤是:(1)求出在处的导数,即在点出的切线斜率(当曲线在处的切线与轴平行时,在处导数不存在,切线方程为);(2)由点斜式求得切线方程.4、C【解题分析】

首先,由已知条件可知,再有,这样可用表示出.【题目详解】∵,∴,,∴,∴.故选C.【题目点拨】本题考查平面向量基本定理,解题时用向量加减法表示出,然后用基底表示即可.5、A【解题分析】

先分别计算号数为奇数的概率、摸到黄球的概率、摸到红球的概率,从而可得摸到黄球且号数为奇数的学生,进而可得摸到红球且不喜欢数学课的学生人数,由此可得估计该校学生中喜欢数学课的人数比例.【题目详解】解:由题意,号数为奇数的概率为0.5,摸到黄球的概率为,摸到红球的概率为那么按概率计算摸到黄球且号数为奇数的学生有个共有32名学生站出来,则有12个摸到红球且不喜欢数学课的学生,不喜欢数学课的学生有:,喜欢数学课的有80个,估计该校学生中喜欢数学课的人数比例大约是:.故选:.【题目点拨】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,是基础题.6、C【解题分析】

根据正弦定理与诱导公式,以及正弦函数的性质,逐项判断,即可得出结果.【题目详解】①在中,因为,所以,所以,故①正确;②,故②正确;③,故③错误;④若是锐角三角形,则,均为锐角,因为正弦函数在上单调递增,所以,故④正确;故选C【题目点拨】本题主要考查命题真假的判定,熟记正弦定理,诱导公式等即可,属于常考题型.7、D【解题分析】

将已知条件转化为的形式列方程组,解方程组求得,进而求得的值.【题目详解】依题意,解得,故.故选:D.【题目点拨】本小题主要考查等差数列通项的基本量计算,属于基础题.8、B【解题分析】

直接利用向量的数量积列出方程求解即可.【题目详解】向量,,若,可得2﹣2=0,解得=1,故选B.【题目点拨】本题考查向量的数量积的应用,考查计算能力,属于基础题.9、D【解题分析】

根据题意得不等式对应的二次函数开口向上,分别讨论三种情况即可.【题目详解】由题意得:当当当综上所述:,选D.【题目点拨】本题主要考查了含参一元二次不等式中参数的取值范围.解这类题通常分三种情况:.有时还需要结合韦达定理进行解决.10、A【解题分析】

逐一考查所给的选项是否正确即可.【题目详解】逐一考查所给的选项:A.平面∥平面,一条直线平行于平面,可能a在平面内或与相交,不一定平行于平面,题中说法错误;B.由面面平行的定义可知:若平面∥平面,则内的任意一条直线都平行于平面,题中说法正确;C.由面面平行的判定定理可得:若一个三角形有两条边所在的直线分别平行于一个平面,那么该三角形所在的平面与这个平面平行,题中说法正确;D.分别在两个平行平面内的两条直线只能是平行直线或异面直线,不可能相交,题中说法正确.本题选择A选项.【题目点拨】本题考查了空间几何体的线面位置关系判定与证明:(1)对于异面直线的判定要熟记异面直线的概念:把既不平行也不相交的两条直线称为异面直线;(2)对于线面位置关系的判定中,熟记线面平行与垂直、面面平行与垂直的定理是关键.二、填空题:本大题共6小题,每小题5分,共30分。11、15【解题分析】

先由,可求出,然后由,代入已知递推公式即可求解。【题目详解】故答案为15.【题目点拨】本题考查是递推公式的应用,是一道基础题。12、二【解题分析】

由点P(tanα,cosα)在第三象限,得到tanα<0,cosα<0,从而得到α所在的象限.【题目详解】因为点P(tanα,cosα)在第三象限,所以tanα<0,cosα<0,则角α的终边在第二象限,故答案为二.点评:本题考查第三象限内的点的坐标的符号,以及三角函数在各个象限内的符号.13、【解题分析】

由递推公式可以求出,可以归纳出数列的周期,从而可得到答案.【题目详解】由,,.,可推测数列是以3为周期的周期数列.所以。故答案为:【题目点拨】本题考查数量的递推公式同时考查数列的周期性,属于中档题.14、【解题分析】,所以,又,得,所以,且求得,又,得单调递增区间为,由题意,当时,。点睛:本题考查三角函数的化简及性质应用。本题首先考查三角函数的辅助角公式应用,并结合对称中心的性质,得到函数解析式。然后考察三角函数的单调性,利用整体思想求出单调区间,求得答案。15、1.98.【解题分析】

本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【题目详解】由题意得,经停该高铁站的列车正点数约为,其中高铁个数为11+21+11=41,所以该站所有高铁平均正点率约为.【题目点拨】本题考点为概率统计,渗透了数据处理和数学运算素养.侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.16、【解题分析】

由诱导公式求解即可.【题目详解】因为所以故答案为:【题目点拨】本题主要考查了利用诱导公式化简求值,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】试题分析:(1)先求模的平方将问题转化为向量的数量积问题.(2)根据数量积公式即可求得两向量的夹角.(1),,所以.(2)设与的夹角为.则,因为,所以.考点:1向量的数量积;2向量的模长.18、(1);(2).【解题分析】

(1)利用正弦定理化简题中等式,得到关于B的三角方程,最后根据A,B,C均为三角形内角解得.(2)根据三角形面积公式,又根据正弦定理和得到关于的函数,由于是锐角三角形,所以利用三个内角都小于来计算的定义域,最后求解的值域.【题目详解】(1)根据题意,由正弦定理得,因为,故,消去得.,因为故或者,而根据题意,故不成立,所以,又因为,代入得,所以.(2)因为是锐角三角形,由(1)知,得到,故,解得.又应用正弦定理,,由三角形面积公式有:.又因,故,故.故的取值范围是【题目点拨】这道题考查了三角函数的基础知识,和正弦定理或者余弦定理的使用(此题也可以用余弦定理求解),最后考查是锐角三角形这个条件的利用.考查的很全面,是一道很好的考题.19、(1);(2)【解题分析】

(1)当时,由余弦定理可求,利用同角三角函数基本关系式可求的值,根据三角形的面积公式即可求解.(2)当时,由余弦定理可求,利用同角三角函数基本关系式可求的值,根据二倍角的正弦函数公式可求的值,利用正弦定理可求的值.【题目详解】(1)当时,,,,,.(2)当时,,,,由正弦定理得:,.【题目点拨】本题主要考查了余弦定理,同角三角函数基本关系式,三角形的面积公式,二倍角的正弦函数公式,正弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.20、(1);(2)见解析【解题分析】

(1)先求出直线过定点,设圆的一般方程,由题意列方程组,即可求圆的方程;(2)由(1)可知:求得直线的斜率,根据对称性求得点坐标,由在圆外,所以点不能作为直角三角形的顶点,分类讨论,即可求得的值.【题目详解】(1)直线的方程可化为,由解得∴定点的坐标为.设圆的方程为,则圆心则依题意有解得∴圆的方程为;(2)由(1)知圆的标准方程为,∴圆心,半径.∵是直径的两个端点,∴圆心是与的中点,∵轴上的点在圆外,∴是锐角,即不是直角顶点.若是的直角顶点,则,得;若是的直角顶点,则,得.综上所述,在轴上存在一点,使为直角三角形,或.【题目点拨】本题考查圆的方程的求法,直线与圆的位置关系,考查分类讨论思想,属于中档题.21、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论