忻州一中2024届高一数学第二学期期末综合测试试题含解析_第1页
忻州一中2024届高一数学第二学期期末综合测试试题含解析_第2页
忻州一中2024届高一数学第二学期期末综合测试试题含解析_第3页
忻州一中2024届高一数学第二学期期末综合测试试题含解析_第4页
忻州一中2024届高一数学第二学期期末综合测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

忻州一中2024届高一数学第二学期期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则下列结论中:(1);(2);(3)若,则;(4)若,则的最小值为.其中正确结论的个数为()A.1 B.2 C.3 D.42.已知函数,正实数是公差为正数的等差数列,且满足,若实数是方程的一个解,那么下列四个判断:①;②;③;④中一定不成立的是()A.① B.②③ C.①④ D.④3.已知的三个内角所对的边为,面积为,且,则等于()A. B. C. D.4.已知集合A={x∈N|0≤x≤3},B={x∈R|-2<x<2}则A∩B()A.{0,1} B.{1} C.[0,1] D.[0,2)5.已知圆,圆,则圆与圆的位置关系是()A.相离 B.相交 C.外切 D.内切6.如图,正方形的边长为a,以A,C为圆心,正方形边长为半径分别作圆,在正方形内随机取一点,则此点取自阴影部分的概率是()A.2-π2 B.2-π37.已知三棱锥中,,,则三棱锥的外接球的表面积为()A. B.4 C. D.8.已知,则的最小值为()A.2 B.0 C.-2 D.-49.若三个实数a,b,c成等比数列,其中a=3-5,c=3+A.2 B.-2 C.±2 D.410.下列函数中,既是偶函数又在区间上单调递减的是(

)A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设等差数列,的前项和分别为,,若,则__________.12.已知,,若,则____13.已知,,则当最大时,________.14.若A(-2,3),B(3,-2),C(4,m)三点共线则m的值为________.15.已知的内角、、的对边分别为、、,若,,且的面积是,___________.16.已知函数的图象如下,则的值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.关于的不等式的解集为.(1)求实数的值;(2)若,求的值.18.已知四棱锥的底面是菱形,底面,是上的任意一点求证:平面平面设,求点到平面的距离在的条件下,若,求与平面所成角的正切值19.在ΔABC中,角A,B,C的对边分别为a,b,c,且满足3(b(1)求角B的大小;(2)若ΔABC的面积为32,B是钝角,求b20.四棱锥中,,,底面,,直线与底面所成的角为,、分别是、的中点.(1)求证:直线平面;(2)若,求证:直线平面;(3)求棱锥的体积.21.已知,(1)求;(2)若,求.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

利用函数知识、换元法、绝对值不等式等知识,对选项进行一一推理证明,即可得答案.【题目详解】对(1),,∴或,∵或,∴原不等式成立,故(1)正确;对(2),∵,故(2)正确;对(3),令,则,显然不成立,故(3)错误;对(4),∵,∴,当时,,∴的最小值为显然不成立,故(4)错误.故选:B.【题目点拨】本题考查函数与不等式的知识,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意消元法、换元法的使用.2、D【解题分析】

先判断出函数的单调性,分两种情况讨论:①;②.结合零点存在定理进行判断.【题目详解】在上单调减,值域为,又.(1)若,由知,③成立;(2)若,此时,①②③成立.综上,一定不成立的是④,故选D.【题目点拨】本题考查零点存在定理的应用,考查自变量大小的比较,解题时要充分考查函数的单调性,对函数值符号不确定的,要进行分类讨论,结合零点存在定理来进行判断,考查分析问题和解决问题的能力,属于中等题.3、C【解题分析】

利用三角形面积公式可得,结合正弦定理及三角恒等变换知识可得,从而得到角A.【题目详解】∵∴即∴∴∴,∴(舍)∴故选C【题目点拨】此题考查了正弦定理、三角形面积公式,以及三角恒等变换,熟练掌握边角的转化是解本题的关键.4、A【解题分析】

可解出集合A,然后进行交集的运算即可.【题目详解】A={0,1,2,3},B={x∈R|﹣2<x<2};∴A∩B={0,1}.故选:A.【题目点拨】本题考查交集的运算,是基础题,注意A中x∈N5、C【解题分析】,,,,,即两圆外切,故选.点睛:判断圆与圆的位置关系的常见方法(1)几何法:利用圆心距与两半径和与差的关系.(2)切线法:根据公切线条数确定.(3)数形结合法:直接根据图形确定6、D【解题分析】

将阴影部分拆分成两个小弓形,从而可求解出阴影部分面积,根据几何概型求得所求概率.【题目详解】如图所示:阴影部分可拆分为两个小弓形则阴影部分面积:S正方形面积:S=∴所求概率P=本题正确选项:D【题目点拨】本题考查利用几何概型求解概率问题,属于基础题.7、B【解题分析】

依据题中数据,利用勾股定理可判断出从而可得三棱锥各面都为直角三角形,进而可知外接圆的直径,即可求出三棱锥的外接球的表面积【题目详解】如图,因为,又,,从而可得三棱锥各面都为直角三角形,CD是三棱锥的外接球的直径,在中,,,即,,故选B.【题目点拨】本题主要考查学生空间想象以及数学建模能力,能够依据条件建立合适的模型是解题的关键.8、D【解题分析】

根据不等式组画出可行域,借助图像得到最值.【题目详解】根据不等式组画出可行域得到图像:将目标函数化为,根据图像得到当目标函数过点时取得最小值,代入此点得到z=-4.故答案为:D.【题目点拨】利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(型)、斜率型(型)和距离型(型);(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解;(4)求最值:将最优解代入目标函数即可求出最大值或最小值。9、C【解题分析】

由实数a,b,c成等比数列,得b2【题目详解】由实数a,b,c成等比数列,得b2所以b=±2.故选C.【题目点拨】本题主要考查了等比数列的基本性质,属于基础题.10、D【解题分析】

利用函数的奇偶性和单调性,逐一判断各个选项中的函数的奇偶性和单调性,进而得出结论.【题目详解】由于函数是奇函数,不是偶函数,故排除A;由于函数是偶函数,但它在区间上单调递增,故排除B;由于函数是奇函数,不是偶函数,故排除C;由于函数是偶函数,且满足在区间上单调递减,故满足条件.故答案为:D【题目点拨】本题主要考查了函数的奇偶性的判定及应用,其中解答中熟记函数的奇偶性的定义和判定方法,以及基本初等函数的奇偶性是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】分析:首先根据等差数列的性质得到,利用分数的性质,将项的比值转化为和的比值,从而求得结果.详解:根据题意有,所以答案是.点睛:该题考查的是有关等差数列的性质的问题,将两个等差数列的项的比值可以转化为其和的比值,结论为,从而求得结果.12、【解题分析】

由,,得的坐标,根据得,由向量数量积的坐标表示即可得结果.【题目详解】∵,,∴又∵,∴,即,所以,解得,故答案为.【题目点拨】本题主要考查了向量的坐标运算,两向量垂直与数量积的关系,属于基础题.13、【解题分析】

根据正切的和角公式,将用的函数表示出来,利用均值不等式求最值,求得取得最大值的,再用倍角公式即可求解.【题目详解】故可得则当且仅当,即时,此时有故答案为:.【题目点拨】本题考查正切的和角公式,以及倍角公式,涉及均值不等式的使用.14、-3【解题分析】

根据三点共线与斜率的关系即可得出.【题目详解】kAB=-2-33-(-2)=-1,k∵A(-2,3),B(3,-2),C(4,m)三点共线,∴﹣1=-3-m6,解得m=故答案为-3.【题目点拨】本题考查了三点共线与斜率的关系,考查了推理能力与计算能力,属于基础题.15、【解题分析】

利用同角三角函数计算出的值,利用三角形的面积公式和条件可求出、的值,再利用余弦定理求出的值.【题目详解】,,,且的面积是,,,,,由余弦定理得,.故答案为.【题目点拨】本题考查利用余弦定理解三角形,同时也考查了同角三角函数的基本关系、三角形面积公式的应用,考查运算求解能力,属于中等题.16、【解题分析】

由函数的图象的顶点坐标求出,由半个周期求出,最后将特殊点的坐标求代入解析式,即可求得的值.【题目详解】解:由图象可得,,得.,将点代入函数解析式,得,,,又因为,所以故答案为:【题目点拨】本题考查由的部分图象确定其解析式.(1)根据函数的最高点的坐标确定(2)根据函数零点的坐标确定函数的周期求(3)利用最值点的坐标同时求的取值,即可得到函数的解析式.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】

(1)由行列式的运算法则,得原不等式即,而不等式的解集为,采用比较系数法,即可得到实数的值;(2)把代入,求得,进一步得到,再由两角差的正切公式即可求解.【题目详解】(1)原不等式等价于,由题意得不等式的解集为,故是方程的两个根,代入解得,所以实数的值为.(2)由,得,即.,【题目点拨】本题考查了行列式的运算法则、由一元二次不等式的解集求参数值、二倍角的正切公式以及两角差的正切公式,需熟记公式,属于基础题.18、(1)见解析(2)(3)【解题分析】

(1)由平面,得出,由菱形的性质得出,利用直线与平面垂直的判定定理得出平面,再利用平面与平面垂直的判定定理可证出结论;(2)先计算出三棱锥的体积,并计算出的面积,利用等体积法计算出三棱锥的高,即为点到平面的距离;(3)由(1)平面,于此得知为直线与平面所成的角,由,得出平面,于此计算出,然后在中计算出即可.【题目详解】(1)平面,平面,,四边形是菱形,,平面;又平面,所以平面平面.(2)设,连结,则,四边形是菱形,,,,设点到平面的距离为平面,,,解得,即点到平面的距离为;(3)由(1)得平面,为与平面所成角,平面,,与平面所成角的正切值为.【题目点拨】本题考查平面与平面垂直的证明、点到平面的距离以及直线与平面所成的角,求解点到平面的距离,常用的方法是等体积法,将问题转化为三棱锥的高来计算,考查空间想象能力与推理能力,属于中等题.19、(1)B=π3或2π【解题分析】

(1)由正弦定理和三角恒等变换的公式,化简得3sin(A+B)=2sinBsin(2)由(1)和三角形的面积公式,可求得ac=2,再由余弦定理和基本不等式,即可求解b的最小值.【题目详解】(1)由题意,知3(b结合正弦定理得:3(即3sin又在△ABC中,sin(A+B)=sinC>0因为B∈(0,π)所以B=π3或(2)由三角形的面积公式,可得12又由sinB=32因为B是钝角,所以B=2π由余弦定理得b2当且仅当a=c时取等号,所以b的最小值为6.【题目点拨】本题主要考查了正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理应用正弦定理和余弦定理求解是解答的关键,着重考查了运算与求解能力,属于中档试题.20、(1)见解析(2)见解析(3)【解题分析】

(1)由中位线定理可得,,再根据平行公理可得,,即可根据线面平行的判定定理证出;(2)根据题意可计算出,而是的中点,可得,又,即可根据线面垂直的判定定理证出;(3)根据等积法,即可求出.【题目详解】(1)证明:连接,,,、是、中点,,从而.又平面,平面,直线平面;(2)证明:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论