版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届通辽市重点中学数学高一下期末检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若等差数列和的公差均为,则下列数列中不为等差数列的是()A.(为常数) B.C. D.2.某班的60名同学已编号1,2,3,…,60,为了解该班同学的作业情况,老师收取了号码能被5整除的12名同学的作业本,这里运用的抽样方法是()A.简单随机抽样 B.系统抽样C.分层抽样 D.抽签法3.等差数列an的公差d<0,且a12=a212,则数列aA.9 B.10 C.10和11 D.11和124.在中,角,,所对的边分别为,,,若,,,则()A. B. C. D.5.天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:907966191925271932812458569683431257393027556488730113537989据此估计,这三天中恰有两天下雨的概率近似为A.0.35 B.0.25 C.0.20 D.0.156.设等比数列满足,,则()A.8 B.16 C.24 D.487.式子的值为()A. B.0 C.1 D.8.阿波罗尼斯是古希腊著名的数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对几何问题有深刻而系统的研究,阿波罗尼斯圆是他的研究成果之一,指出的是:已知动点M与两定点A,B的距离之比为,那么点M的轨迹是一个圆,称之为阿波罗尼斯圆.请解答下面问题:已知,,若直线上存在点M满足,则实数c的取值范围是()A. B. C. D.9.要得到函数的图象,只需将函数的图象()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位10.设是虚数单位,复数为纯虚数,则实数的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.用数学归纳法证明时,从“到”,左边需增乘的代数式是___________.12.若角的终边经过点,则______.13.如图中,,,,M为AB边上的动点,,D为垂足,则的最小值为______;14.已知向量为单位向量,向量,且,则向量的夹角为__________.15.在中,若,则____________.16.给出以下四个结论:①平行于同一直线的两条直线互相平行;②垂直于同一平面的两个平面互相平行;③若,是两个平面;,是异面直线;且,,,,则;④若三棱锥中,,,则点在平面内的射影是的垂心;其中错误结论的序号为__________.(要求填上所有错误结论的序号)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求的值;(2)设,求的值.18.在中,角、、所对的边分别为、、,且满足.(1)求角;(2)若,,求的周长.19.在△ABC中,AC=4,,.(Ⅰ)求的大小;(Ⅱ)若D为BC边上一点,,求DC的长度.20.年北京市进行人口抽样调查,随机抽取了某区居民人,记录他们的年龄,将数据分成组:,,,…,并整理得到如下频率分布直方图:(Ⅰ)从该区中随机抽取一人,估计其年龄不小于的概率;(Ⅱ)估计该区居民年龄的中位数(精确到);(Ⅲ)假设同组中的每个数据用该组区间的中点值代替,估计该区居民的平均年龄.21.已知f(x)=(Ⅰ)化简f(x);(Ⅱ)若x是第三象限角,且tanx=2,求f(x)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
利用等差数列的定义对选项逐一进行判断,可得出正确的选项.【题目详解】数列和是公差均为的等差数列,则,,.对于A选项,,数列(为常数)是等差数列;对于B选项,,数列是等差数列;对于C选项,,所以,数列是等差数列;对于D选项,,不是常数,所以,数列不是等差数列.故选:D.【题目点拨】本题考查等差数列的定义和通项公式,注意等差数列定义的应用,考查推理能力,属于中等题.2、B【解题分析】由题意,抽出的号码是5,10,15,…,60,符合系统抽样的特点:“等距抽样”,故选B.3、C【解题分析】
利用等差数列性质得到a11=0,再判断S10【题目详解】等差数列an的公差d<0,且a根据正负关系:S10或S故答案选C【题目点拨】本题考查了等差数列的性质,Sn的最大值,将Sn的最大值转化为4、C【解题分析】
在中,利用正弦定理求出即可.【题目详解】在中,角,,所对的边分别为,,,已知:,,,利用正弦定理:,解得:.故选C.【题目点拨】本题考查了正弦定理的应用及相关的运算问题,属于基础题.5、B【解题分析】解:由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三天中恰有两天下雨的有:191、271、932、812、393,共5组随机数,∴所求概率为=0.1.故选B6、A【解题分析】
利用等比数列的通项公式即可求解.【题目详解】设等比数列的公比为,则,解得所以.故选:A【题目点拨】本题考查了等比数列的通项公式,需熟记公式,属于基础题.7、B【解题分析】
根据两角和的余弦公式,得到原式,即可求解,得到答案.【题目详解】由两角和的余弦公式,可得,故选B.【题目点拨】本题主要考查了两角和的余弦公式的化简求值,其中解答中熟记两角和的余弦公式是解答的关键,着重考查了运算与求解能力,属于基础题.8、B【解题分析】
根据题意设点M的坐标为,利用两点间的距离公式可得到关于的一元二次方程,只需即可求解.【题目详解】点M在直线上,不妨设点M的坐标为,由直线上存在点M满足,则,整理可得,,所以实数c的取值范围为.故选:B【题目点拨】本题考查了两点间的距离公式、一元二次不等式的解法,考查了学生分析问题解决问题的能力,属于中档题.9、D【解题分析】
根据三角函数图象的平移变换可直接得到图象变换的过程.【题目详解】因为,所以向右平移个单位即可得到的图象.故选:D.【题目点拨】本题考查三角函数图象的平移变换,难度较易.注意左右平移时对应的规律:左加右减.10、A【解题分析】,,,故选A.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解题分析】
从到时左边需增乘的代数式是,化简即可得出.【题目详解】假设时命题成立,则,当时,从到时左边需增乘的代数式是.故答案为:.【题目点拨】本题考查数学归纳法的应用,考查推理能力与计算能力,属于中档题.12、【解题分析】
利用三角函数的定义可计算出,然后利用诱导公式可计算出结果.【题目详解】由三角函数的定义可得,由诱导公式可得.故答案为:.【题目点拨】本题考查利用三角函数的定义和诱导公式求值,考查计算能力,属于基础题.13、【解题分析】
以为坐标原点建立平面直角坐标系,用坐标表示出的值,然后利用换元法求解出对应的最小值即可.【题目详解】如图所示,设,所以,根据条件可知:,所以,设,,,所以,所以,所以,所以当时,有最小值,最小值为.故答案为:.【题目点拨】本题考查利用坐标法以及换元法求解最值,着重考查逻辑推理和运算求解的能力,属于较难题(1)利用换元法求解最值时注意,换元后新元的取值范围;(2)三角函数中的一组“万能公式”:,.14、【解题分析】因为,所以,所以,所以,则.15、2【解题分析】
根据正弦定理角化边可得答案.【题目详解】由正弦定理可得.故答案为:2【题目点拨】本题考查了正弦定理角化边,属于基础题.16、②【解题分析】
③①可由课本推论知正确;②可举反例;④可进行证明.【题目详解】命题①平行于同一直线的两条直线互相平行,由课本推论知是正确的;②垂直于同一平面的两个平面互相平行,是错误的,例如正方体的上底面,前面和右侧面,是互相垂直的关系;③根据课本推论知结论正确;④若三棱锥中,,,则点在平面内的射影是的垂心这一结论是正确的;作出B在底面的射影O,连结AO,DO,则,同理,,进而得到O为三角形的垂心.
故答案为②【题目点拨】这个题目考查了命题真假的判断,一般这类题目可以通过课本的性质或者结论进行判断;也可以通过举反例来解决这个问题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】试题分析:(1)直接带入求值;(2)将和直接带入函数,会得到和的值,然后根据的值.试题解析:解:(1)(2)考点:三角函数求值18、(1)(2)【解题分析】
(1)直接利用余弦定理得到答案.(2)根据面积公式得到,利用余弦定理得到,计算得到答案.【题目详解】解:(1)由得.∴.又∵,∴.(2)∵,∴,则.把代入得即.∴,则.∴的周长为.【题目点拨】本题考查了余弦定理,面积公式,周长,意在考查学生对于公式的灵活运用.19、(Ⅰ);(Ⅱ)或【解题分析】
(Ⅰ)由正弦定理得到,在结合三角形内角的性质即可的大小;(Ⅱ)由(Ⅰ)可得的大小,在中,利用余弦定理即可求出边的长.【题目详解】(Ⅰ)在中,由正弦定理得,所以.因为,所以,所以.(Ⅱ)在中,.在中,由余弦定理,得,即,解得或.经检验,都符合题意.【题目点拨】本题主要考查正弦定理与余弦定理,属于基础题.20、(Ⅰ)(Ⅱ)(Ⅲ)【解题分析】
(I)计算之间的频率和,由此估计出年龄不小于的概率.(II)从左往右,计算出频率之和为的位置,由此估计中中位数.(III)用各组中点值乘以频率人后相加,求得居民平均年龄的估计值.【题目详解】解:(Ⅰ)设从该区中随机抽取一人,估计其年龄不小于60为事件,所以该区中随机抽取一人,估计其年龄不小于60的概率为.(Ⅱ)年龄在的累计频率为,,所以估计中位数为.(Ⅲ)平均年龄为【题目点拨】本小题主要考查频率分布直方图的识别与应用,考查频率
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版环保物流绿色包装运输合同规范3篇
- 二零二五版个人房产抵押贷款债权转让合同3篇
- 二零二五版财务会计岗位聘用合同9篇
- 二零二五版智能家居股份制合作合同范本3篇
- 二零二五年度钢结构工程钢筋加工与配送合同范本3篇
- 二零二五版工业4.0工厂生产承包服务合同模板3篇
- 二零二五年房产共有权份额转让产权买卖合同范本含份额调整方案3篇
- 二零二五版个人承包公司物流运输合作合同书6篇
- 二零二五版安徽省劳动合同解除争议调解服务合同2篇
- 二零二五年度能源股权转让居间服务合同范本2篇
- 大型活动联合承办协议
- 工程项目采购与供应链管理研究
- 2024年吉林高考语文试题及答案 (2) - 副本
- 拆除电缆线施工方案
- 搭竹架合同范本
- Neo4j介绍及实现原理
- 焊接材料-DIN-8555-标准
- 工程索赔真实案例范本
- 重症医学科运用PDCA循环降低ICU失禁性皮炎发生率品管圈QCC持续质量改进成果汇报
- 个人股权证明书
- 医院运送工作介绍
评论
0/150
提交评论