版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省“七彩阳光”2024届高一数学第二学期期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在等差数列an中,a1=1,aA.13 B.16 C.32 D.352.若实数满足约束条件,则的最大值是()A. B.0 C.1 D.23.已知平面向量与的夹角为,且,则()A. B. C. D.4.若,则()A.- B. C. D.5.若是异面直线,直线,则与的位置关系是()A.相交 B.异面 C.平行 D.异面或相交6.如图,在平面直角坐标系xOy中,角α0≤α≤π的始边为x轴的非负半轴,终边与单位圆的交点为A,将OA绕坐标原点逆时针旋转π2至OB,过点B作x轴的垂线,垂足为Q.记线段BQ的长为y,则函数A. B.C. D.7.已知向量,,则向量的夹角的余弦值为()A. B. C. D.8.设,则“数列为等比数列”是“数列满足”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件9.如图所示,在正方体ABCDA1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成的角的大小为()A.30° B.45° C.60° D.90°10.若、为异面直线,直线,则与的位置关系是()A.相交 B.异面 C.平行 D.异面或相交二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列的通项公式,,前项和达到最大值时,的值为______.12.在中,若,则等于__________.13.已知无穷等比数列满足:对任意的,,则数列公比的取值集合为__________.14.在中,,,面积为,则________.15.已知函数的图象如图所示,则不等式的解集为______.16.已知数列是等差数列,记数列的前项和为,若,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在直角坐标系中,点,圆的圆心为,半径为2.(Ⅰ)若,直线经过点交圆于、两点,且,求直线的方程;(Ⅱ)若圆上存在点满足,求实数的取值范围.18.某公司为了提高工效,需分析该公司的产量台与所用时间小时之间的关系,为此做了四次统计,所得数据如下:产品台数台2345所用时间小时34求出y关于x的线性回归方程;预测生产10台产品需要多少小时?19.已知函数,.(1)求函数的单调减区间;(2)若存在,使等式成立,求实数的取值范围.20.某地区2012年至2018年农村居民家庭人均纯收入y(单位:千元)的数据如下表:年份2012201320142015201620172018年份代号1234567人均纯收入2.93.33.64.44.85.25.9(1)已知y与x线性相关,求y关于x的线性回归方程;(2)利用(1)中的线性回归方程,预测该地区2020年农村居民家庭人均纯收入.(附:线性回归方程中,,,其中为样本平均数)21.如图,矩形所在平面与以为直径的圆所在平面垂直,为中点,是圆周上一点,且,,.(1)求异面直线与所成角的余弦值;(2)设点是线段上的点,且满足,若直线平面,求实数的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
直接利用等差数列的前n项和公式求解.【题目详解】数列an的前5项和为5故选:D【题目点拨】本题主要考查等差数列的前n项和的计算,意在考查学生对该知识的理解掌握水平,属于基础题.2、C【解题分析】
由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,求出最优解的坐标代入目标函数即可得解.【题目详解】作出可行域如图,设,联立,则,,当直线经过点时,截距取得最小值,取得最大值.故选:C【题目点拨】本题考查简单的线性规划,考查了数形结合的解题思想方法,属于基础题.3、A【解题分析】
根据平面向量数量积的运算法则,将平方运算可得结果.【题目详解】∵,∴,∴cos=4,∴,故选A.【题目点拨】本题考查了利用平面向量的数量积求模的应用问题,考查了数量积与模之间的转化,是基础题目.4、B【解题分析】
首先观察两个角之间的关系:,因此两边同时取余弦值即可.【题目详解】因为所以所以,选B.【题目点拨】本题主要考查了三角函的诱导公式.解决此题的关键在于拼凑出,再利用诱导公式(奇变偶不变、符号看象限)即可.5、D【解题分析】
若为异面直线,且直线,则与可能相交,也可能异面,但是与不能平行,若,则,与已知矛盾,选项、、不正确故选.6、B【解题分析】BQ=|y点睛:有关函数图象识别问题的常见题型及解题思路(1)由解析式确定函数图象的判断技巧:(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.(2)由实际情景探究函数图象.关键是将问题转化为熟悉的数学问题求解,要注意实际问题中的定义域问题.7、C【解题分析】
先求出向量,再根据向量的数量积求出夹角的余弦值.【题目详解】∵,∴.设向量的夹角为,则.故选C.【题目点拨】本题考查向量的线性运算和向量夹角的求法,解题的关键是求出向量的坐标,然后根据数量积的定义求解,注意计算的准确性,属于基础题.8、A【解题分析】
“数列为等比数列”,则,数列满足.反之不能推出,可以举出反例.【题目详解】解:“数列为等比数列”,则,数列满足.充分性成立;反之不能推出,例如,数列满足,但数列不是等比数列,即必要性不成立;故“数列为等比数列”是“数列满足”的充分非必要条件故选:.【题目点拨】本题考查了等比数列的定义、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.9、C【解题分析】连接,由三角形中位线定理及平行四边形性质可得,所以是与所成角,由正方体的性质可知是等边三角形,所以,与所成角是,故选C.10、D【解题分析】解:因为为异面直线,直线,则与的位置关系是异面或相交,选D二、填空题:本大题共6小题,每小题5分,共30分。11、或【解题分析】
令,求出的取值范围,即可得出达到最大值时对应的值.【题目详解】令,解得,因此,当或时,前项和达到最大值.故答案为:或.【题目点拨】本题考查等差数列前项和最值的求解,可以利用关于的二次函数,由二次函数的基本性质求得,也可以利用等差数列所有非正项或非负项相加即得,考查计算能力,属于基础题.12、;【解题分析】
由条件利用三角形内角和公式求得,再利用正弦定理即可求解.【题目详解】在中,,,,即,,故答案为:【题目点拨】本题考查了正弦定理解三角形,需熟记定理的内容,属于基础题.13、【解题分析】
根据条件先得到:的表示,然后再根据是等比数列讨论公比的情况.【题目详解】因为,所以,即;取连续的有限项构成数列,不妨令,则,且,则此时必为整数;当时,,不符合;当时,,符合,此时公比;当时,,不符合;当时,,不符合;故:公比.【题目点拨】本题考查无穷等比数列的公比,难度较难,分析这种抽象类型的数列问题时,经常需要进行分类,可先通过列举的方式找到思路,然后再准确分析.14、【解题分析】
由已知利用三角形面积公式可求c,进而利用余弦定理可求a的值,根据正弦定理即可计算求解.【题目详解】,,面积为,解得,由余弦定理可得:,所以,故答案为:【题目点拨】本题主要考查了三角形面积公式,余弦定理,正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.15、【解题分析】
根据函数图象以及不等式的等价关系即可.【题目详解】解:不等式等价为或,
则,或,
故不等式的解集是.
故答案为:.【题目点拨】本题主要考查不等式的求解,根据不等式的等价性结合图象之间的关系是解决本题的关键.16、1【解题分析】
由等差数列的求和公式和性质可得,代入已知式子可得.【题目详解】由等差数列的求和公式和性质可得:=,且,∴.故答案为:1.【题目点拨】本题考查了等差数列的求和公式及性质的应用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)或.(Ⅱ)【解题分析】
(Ⅰ)勾股定理求出圆心到直线的距离d,利用d=1以直线的斜率存在、不存在两种情况进行分类讨论;(Ⅱ)设,由求出x、y满足的关系式,可得点在圆上,推出圆与圆有公共点,所以,列出不等式求解即可.【题目详解】(Ⅰ)当,圆心为,圆的方程为,设圆心到直线的距离为,则.①若直线的斜率存在,设直线的方程为,即,,解得,此时的方程为,即.②若直线的斜率不存在,直线的方程为,验证满足,符合题意.综上所述,直线的方程为或.(Ⅱ)设,则,于是由得,即,所以点在圆上,又点在圆上,故圆与圆有公共点,即,于是,解得,因此实数的取值范围是.【题目点拨】本题考查直线与圆的位置关系的综合应用,向量的数量积,根据圆与圆的位置关系求参数,属于中档题.18、(1)(2)小时【解题分析】
求出出横标和纵标的平均数,得到样本中心点,求出对应的横标和纵标的积的和,求出横标的平方和,做出系数和的值,写出线性回归方程.将代入回归直线方程,可得结论.【题目详解】解:由题意,,,于是回归方程;由题意,时,答:根据回归方程,加工能力10个零件,大约需要小时.【题目点拨】本题考查线性回归方程的求法和应用,考查学生的计算能力,属于中档题.19、(1),.(2)【解题分析】
(1)利用降次公式和辅助角公式化简表达式,根据三角函数单调区间的求法,求得函数的单调减区间.(2)首先求得当时的值域.利用换元法令,将转化为,根据的范围,结合二次函数的性质,求得的取值范围.【题目详解】(1)由()解得().所以所求函数的单调减区间是,.(2)当时,,,即.令(),则关于的方程在上有解,即关于的方程在上有解.当时,.所以,则.因此所求实数的取值范围是.【题目点拨】本小题主要考查三角恒等变换,考查三角函数单调区间的求法,考查根据方程的根存在求参数的取值范围,考查二次函数的性质,考查化归与转化的数学思想方法,属于中档题.20、(1);(2)6.8千元.【解题分析】
(1)由表中数据计算、,求出回归系数,得出关于的线性回归方程;(2)利用线性回归方程计算2020年对应时的值,即可得出结论.【题目详解】(1)由表中数据,计算,,,,,,关于的线性回归方程为:;(2)利用线性回归方程,计算时,(千元),预测该地区2020年农村居民家庭人均纯收入为6.8千元.【题目点拨】本题考查线性回归方程的求法与应用问题,考查函数与方程思想、转化与化归思想,考查数据处理.21、(1);(2)1【解题分析】
(1)取中点,连接,即为所求角。在中,易得MC,NC的长,MN可在直角三角形中求得。再用余弦定理易求得夹角。(2)连接,连接和交于点,连接,易得,所以为的中位线,所以为中点,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 有偿使用邮政场地合同格式
- 高考物理总复习专题四曲线运动万有引力与航天第1讲曲线运动、运动的合成与分解练习含答案
- 作文主题03 大美家乡-五年级语文作文主题训练
- 2024秋九年级历史上册 第六单元 资本主义制度的初步确立 第18课 美国的独立教案 新人教版
- 2024-2025学年新教材高中政治 第3单元 经济全球化 单元综合提升教案 新人教版选择性必修1
- 2024-2025学年高中历史 专题2 古代中国的科学技术与文化 3 中国古典文学的时代特色教案 人民版必修3
- 2024年四年级品社下册《精彩的社区生活》教案1 浙教版
- 2023六年级语文上册 第五单元 习作例文与习作教案 新人教版
- 2023三年级数学上册 六 长方形和正方形的周长 室外测量教案 冀教版
- 2023六年级语文上册 第一单元 语文园地一教案 新人教版
- 最新种植新病历
- 水联动试车方案(共33页)
- 高效电池片(TOPCon)生产项目可行性研究报告模板-提供甲乙丙资质资信
- INPLAN操作培训PPT课件
- VB和Oracle的链接
- 代理报关委托书
- 小学美术四年级质量检测试卷(共3页)
- 青少年科学调查体验活动分析报告
- 大班科学四季的变化ppt课件
- 建设部211文件
- 16种多环芳烃简介
评论
0/150
提交评论