辽宁省本溪高中、沈阳二中、营口高中等2024届数学高一下期末学业质量监测模拟试题含解析_第1页
辽宁省本溪高中、沈阳二中、营口高中等2024届数学高一下期末学业质量监测模拟试题含解析_第2页
辽宁省本溪高中、沈阳二中、营口高中等2024届数学高一下期末学业质量监测模拟试题含解析_第3页
辽宁省本溪高中、沈阳二中、营口高中等2024届数学高一下期末学业质量监测模拟试题含解析_第4页
辽宁省本溪高中、沈阳二中、营口高中等2024届数学高一下期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省本溪高中、沈阳二中、营口高中等2024届数学高一下期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,,则与的夹角为()A. B. C. D.2.圆心为且过原点的圆的方程是()A.B.C.D.3.若,且,则xy的最大值为()A. B. C. D.4.设集合,集合为函数的定义域,则()A. B. C. D.5.若圆与圆相切,则实数()A.9 B.-11 C.-11或-9 D.9或-116.设是等差数列的前项和,若,则A. B. C. D.7.若,则下列结论成立的是()A. B.C.的最小值为2 D.8.把黑、红、白3张纸牌分给甲、乙、丙三人,则事件“甲分得红牌”与“乙分得红牌”是()A.对立事件B.互斥但不对立事件C.不可能事件D.必然事件9.如图是一个边长为3的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷1089个点,其中落入白色部分的有484个点,据此可估计黑色部分的面积为()A.4 B.5 C.8 D.910.若一个三角形,采用斜二测画法作出其直观图,则其直观图的面积是原三角形面积的()A.倍 B.2倍 C.倍 D.倍二、填空题:本大题共6小题,每小题5分,共30分。11.某校老年、中年和青年教师的人数分别为90,180,160,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有32人,则抽取的样本中老年教师的人数为_____12.已知函数在一个周期内的图象如图所示,则的解析式是______.13.在一个不透明的布袋中,红色,黑色,白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球,黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是_________个.14.和的等差中项为__________.15.已知,,则______.16.已知,则与的夹角等于____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在三棱柱中(底面为正三角形),平面,,,,是边的中点.(1)证明:平面平面.(2)求点到平面的距离.18.东莞市公交公司为了方便广大市民出行,科学规划公交车辆的投放,计划在某个人员密集流动地段增设一个起点站,为了研究车辆发车的间隔时间与乘客等候人数之间的关系,选取一天中的六个不同的时段进行抽样调查,经过统计得到如下数据:间隔时间(分钟)81012141618等候人数(人)161923262933调查小组先从这6组数据中选取其中的4组数据求得线性回归方程,再用剩下的2组数据进行检验,检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数的差,若两组差值的绝对值均不超过1,则称所求的回归方程是“理想回归方程”.参考公式:用最小二乘法求线性回归方程的系数公式:,(1)若选取的是前4组数据,求关于的线性回归方程;(2)判断(1)中的方程是否是“理想回归方程”:(3)为了使等候的乘客不超过38人,试用(1)中方程估计间隔时间最多可以设置为多少分钟?19.如图已知平面,,,,,,点,分别为,的中点.(1)求证://平面;(2)求直线与平面所成角的大小.20.已知函数.(1)若在区间上的最小值为,求的值;(2)若存在实数,使得在区间上单调且值域为,求的取值范围.21.已知等差数列满足,.(1)求的通项公式;(2)设等比数列满足.若,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】

根据平面向量夹角公式可求得,结合的范围可求得结果.【题目详解】设与的夹角为,又故选:【题目点拨】本题考查平面向量夹角的求解问题,关键是熟练掌握两向量夹角公式,属于基础题.2、D【解题分析】试题分析:设圆的方程为,且圆过原点,即,得,所以圆的方程为.故选D.考点:圆的一般方程.3、D【解题分析】

利用基本不等式可直接求得结果.【题目详解】(当且仅当时取等号)的最大值为故选:【题目点拨】本题考查利用基本不等式求解积的最大值的问题,属于基础题.4、B【解题分析】

解不等式化简集合的表示,求出函数的定义域,表示成集合的形式,运用集合的并集运算法则,结合数轴求出.【题目详解】因为,所以.又因为函数的定义域为,所以.因此,故本题选B.【题目点拨】本题考查了集合的并集运算,正确求出对数型函数的定义域,运用数轴是解题的关键.5、D【解题分析】

分别讨论两圆内切或外切,圆心距和半径之间的关系即可得出结果.【题目详解】圆的圆心坐标为,半径;圆的圆心坐标为,半径,讨论:当圆与圆外切时,,所以;当圆与圆内切时,,所以,综上,或.【题目点拨】本题主要考查圆与圆位置关系,由两圆相切求参数的值,属于基础题型.6、A【解题分析】,,选A.7、D【解题分析】

由,根据不等式乘方性质可判断A不成立;由指数函数单调性可判断B不成立;由基本不等式可判断C不成立,D成立.【题目详解】对于A,若,则有,故A不成立;对于B,根据指数函数单调性,函数单调递减,,故B不成立;对于C,由基本不等式,a=b取得最小值,由不能取得最小值,故C不成立;则D能成立.故选:D.【题目点拨】本题考查基本不等式、不等式的基本性质,考查不等式性质的应用,属于基础题.8、B【解题分析】试题分析:把黑、红、白3张纸牌分给甲、乙、丙三人,事件“甲分得红牌”与“乙分得红牌”不可能同时发生,是互斥事件,但除了事件“甲分得红牌”与“乙分得红牌”还有“丙分得红牌”,所以这两者不是对立事件,答案为B.考点:互斥与对立事件.9、B【解题分析】

由几何概型中的随机模拟试验可得:,将正方形面积代入运算即可.【题目详解】由题意在正方形区域内随机投掷1089个点,其中落入白色部分的有484个点,则其中落入黑色部分的有605个点,由随机模拟试验可得:,又,可得,故选B.【题目点拨】本题主要考查几何概型概率公式以及模拟实验的基本应用,属于简单题,求不规则图形的面积的主要方法就是利用模拟实验,列出未知面积与已知面积之间的方程求解.10、C【解题分析】

以三角形的一边为x轴,高所在的直线为y轴,由斜二测画法看三角形底边长和高的变化即可.【题目详解】以三角形的一边为x轴,高所在的直线为y轴,由斜二测画法知,三角形的底长度不变,高所在的直线为y′轴,长度减半,故三家性的高变为原来的sin45°=,故直观图中三角形面积是原三角形面积的.故选C.【题目点拨】本题重点考查了斜二侧画法、平面图形的面积的求解方法等知识,属于中档题.解题关键是准确理解斜二侧画法的内涵,与x轴平行的线段长度保持不变,与y轴平行的线段的长度减少为原来的一半.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

根据分层抽样的定义建立比例关系,即可得到答案。【题目详解】设抽取的样本中老年教师的人数为,学校所有的中老年教师人数为270人由分层抽样的定义可知:,解得:故答案为【题目点拨】本题考查分层抽样,考查学生的计算能力,属于基础题。12、【解题分析】

由图象得出,得出该函数图象的最小正周期,可得出,再将点的坐标代入函数的解析式,结合该函数在附近的单调性求得的表达式,即可得出函数的解析式.【题目详解】由图象可得,函数的最小正周期为,,则,由于函数的图象过点,且在附近单调递增,所以,,,因此,.故答案为:.【题目点拨】本题考查利用三角函数的图象求解析式,一般要结合图象依次求出、、的值,在利用对称中心求时,要结合函数在对称中心附近的单调性来求解,考查计算能力,属于中等题.13、16【解题分析】

根据红色球和黑色球的频率稳定值,计算红色球和黑色球的个数,从而得到白色球的个数.【题目详解】根据概率是频率的稳定值的意义,红色球的个数为个;黑色球的个数为个;故白色球的个数为4个.故答案为:16.【题目点拨】本题考查概率和频率之间的关系:概率是频率的稳定值.14、【解题分析】

设和的等差中项为,利用等差中项公式可得出的值.【题目详解】设和的等差中项为,由等差中项公式可得,故答案为:.【题目点拨】本题考查等差中项的求解,解题时要充分利用等差中项公式来求解,考查计算能力,属于基础题.15、【解题分析】

利用同角三角函数的基本关系求得的值,利用二倍角的正切公式,求得,再利用两角和的正切公式,求得的值,再结合的范围,求得的值.【题目详解】,,,,,,故答案:.【题目点拨】本题主要考查同角三角函数的基本关系,两角和的正切公式,二倍角的正切公式,根据三角函数的值求角,属于基础题.16、【解题分析】

根据向量的坐标即可求出,根据向量夹角的公式即可求出.【题目详解】∵,,,,∴,又,∴.故答案为:.【题目点拨】考查向量坐标的数量积运算,向量坐标求向量长度的方法,以及向量夹角的余弦公式,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解题分析】

(1)由,为的中点,可得,又平面,可得,即可证明平面,结合平面,即可证明平面平面;(2)设点到平面的距离为,由等体积法,,即,求解即可.【题目详解】(1)证明:,为的中点,.又平面,平面,.又,平面.又平面,平面平面.(2)解:由(1)知,平面,平面,.,,,.设点到平面的距离为,由,得,即,,即点到平面的距离为.【题目点拨】本题考查了面面垂直的证明,考查了利用等体积法求点到面的距离,考查了学生的空间想象能力,属于中档题.18、(1)(2)是“理想回归方程”(3)估计间隔时间最多可以设置为21分钟【解题分析】

(1)根据所给公式计算可得回归方程;(2)由理想回归方程的定义验证;(3)直接解不等式即可.【题目详解】(1),(2)当时,当时,,所以判断(1)中的方程是“理想回归方程”(3)由,得估计间隔时间最多可以设置为21分钟【题目点拨】本题考查回归直线方程,解题时直接根据所给公式计算,考查了学生的运算求解能力.19、(1)见证明;(2)【解题分析】

(1)要证线面平行即证线线平行,本题连接A1B,(2)取中点,连接证明平面,再求出,得到.【题目详解】(1)如图,连接,在中,因为和分别是和的中点,所以.又因为平面,所以平面;取中点和中点,连接,,.因为和分别为和,所以,,故且,所以,且.又因为平面,所以平面,从而为直线与平面所成的角.在中,可得,所以.因为,,所以,,,所以,,又由,有.在中,可得;在中,,因此.所以直线与平面所成角为.【题目点拨】求线面角一般有两个方法:几何法做出线上一点到平面的高,求出高;或利用等体积法求高向量法.20、(1);(2).【解题分析】

(1)根据二次函数单调性讨论即可解决.(2)分两种情况讨论,分别讨论单调递增和单调递减的情况即可解决.【题目详解】(1)若,即时,,解得:,若,即时,,解得:(舍去).(2)(ⅰ)若在上单调递增,则,则,即是方程的两个不同解,所以,即,且当时,要有,即,可得,所以;(ⅱ)若在上单调递减,则,则,两式相减得:,将代入(2)式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论