版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省永州市新田县第一中学2024届数学高一下期末达标检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设满足约束条件,则的最大值为()A.7 B.6 C.5 D.32.P是直线x+y+2=0上任意一点,点Q在圆x-22+yA.2 B.4-2 C.4+23.已知集合,则().A. B. C. D.4.已知数列(,)具有性质:对任意、(),与两数中至少有一个是该数列中的一项,对于命题:①若数列具有性质,则;②若数列,,()具有性质,则;下列判断正确的是()A.①和②均为真命题 B.①和②均为假命题C.①为真命题,②为假命题 D.①为假命题,②为真命题5.已知数列满足,,则数列的前5项和()A.15 B.28 C.45 D.666.已知数列是等比数列,若,且公比,则实数的取值范围是()A. B. C. D.7.已知扇形的半径为,圆心角为,则该扇形的面积为()A. B. C. D.8.函数的图象如图所示,为了得到的图象,可将的图象()A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位9.在中,内角A,B,C的对边分别为a,b,c,若a,b,c依次成等差数列,,,依次成等比数列,则的形状为()A.等边三角形 B.等腰直角三角形C.钝角三角形 D.直角边不相等的直角三角形10.已知集合,,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知a,b为常数,若,则______;12.已知,,若,则______13.体积为8的一个正方体,其全面积与球的表面积相等,则球的体积等于________.14.已知,那么__________.15.直线与直线垂直,则实数的值为_______.16.设向量与向量共线,则实数等于__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)若对任意的,不等式上恒成立,求实数的取值范围;(2)解关于的不等式.18.一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4,现从盒子中随机抽取卡片.(Ⅰ)若一次从中随机抽取3张卡片,求3张卡片上数字之和大于或等于7的概率;(Ⅱ)若第一次随机抽取1张卡片,放回后再随机抽取1张卡片,求两次抽取的卡片中至少一次抽到数字2的概率.19.已知函数,.(1)求函数的值域;(2)若恒成立,求m的取值范围.20.某校为了了解学生每天平均课外阅读的时间(单位:分钟),从本校随机抽取了100名学生进行调查,根据收集的数据,得到学生每天课外阅读时间的频率分布直方图,如图所示,若每天课外阅读时间不超过30分钟的有45人.(Ⅰ)求,的值;(Ⅱ)根据频率分布直方图,估计该校学生每天课外阅读时间的中位数及平均值(同一组中的数据用该组区间的中点值代表).21.为了解学生的学习情况,某学校在一次考试中随机抽取了20名学生的成绩,分成[50,60),[60,70),[70,80),[80,90),[90,100]五组,绘制了如图所示频率分布直方图.求:(Ⅰ)图中m的值;(II)估计全年级本次考试的平均分;(III)若从样本中随机抽取分数在[80,100]的学生两名,求所抽取两人至少有一人分数不低于90分的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
考点:简单线性规划.专题:计算题.分析:首先作出可行域,再作出直线l0:y=-3x,将l0平移与可行域有公共点,直线y=-3x+z在y轴上的截距最大时,z有最大值,求出此时直线y=-3x+z经过的可行域内的点A的坐标,代入z=3x+y中即可.解:如图,作出可行域,作出直线l0:y=-3x,将l0平移至过点A(3,-2)处时,函数z=3x+y有最大值1.故选A.点评:本题考查线性规划问题,考查数形结合思想.解答的步骤是有两种方法:一种是:画出可行域画法,标明函数几何意义,得出最优解.另一种方法是:由约束条件画出可行域,求出可行域各个角点的坐标,将坐标逐一代入目标函数,验证,求出最优解.2、D【解题分析】
首先求出圆心到直线的距离与半径比较大小,得到直线与圆是相离的,根据圆上的点到直线的距离的最小值等于圆心到直线的距离减半径,求得结果.【题目详解】因为圆心(2,0)到直线x+y+2=0的距离为d=2+0+2所以直线x+y+2=0与圆(x-2)2所以PQ的最小值等于圆心到直线的距离减去半径,即PQmin故选D.【题目点拨】该题考查的是有关直线与圆的问题,涉及到的知识点有直线与圆的位置关系,点到直线的距离公式,圆上的点到直线的距离的最小值问题,属于简单题目.3、B【解题分析】
求解一元二次不等式的解集,化简集合的表示,最后运用集合交集的定义,结合数轴求出.【题目详解】因为,所以,故本题选B.【题目点拨】本题考查了一元二次不等式的解法,考查了集合交集的运算,正确求解一元二次不等式的解集、运用数轴是解题的关键.4、A【解题分析】
本题是一种重新定义问题,要我们理解题目中所给的条件,解决后面的问题,把后面的问题挨个验证.【题目详解】解:①若数列具有性质,取数列中最大项,则与两数中至少有一个是该数列中的一项,而不是该数列中的项,是该数列中的项,又由,;故①正确;②数列,,具有性质,,与至少有一个是该数列中的一项,且,若是该数列中的一项,则,,易知不是该数列的项,.若是该数列中的一项,则或或,a、若同,b、若,则,与矛盾,c、,则,综上.故②正确.故选:.【题目点拨】考查数列的综合应用,此题能很好的考查学生的应用知识分析、解决问题的能力,侧重于对能力的考查,属中档题.5、C【解题分析】
根据可知数列为等差数列,再根据等差数列的求和性质求解即可.【题目详解】因为,故数列是以4为公差,首项的等差数列.故.故选:C【题目点拨】本题主要考查了等差数列的判定与等差数列求和的性质与计算,属于基础题.6、C【解题分析】
由可得,结合可得结果.【题目详解】,,,,,,故选C.【题目点拨】本题主要考查等比数列的通项公式,意在考查对基础知识的掌握与应用,属于基础题.7、A【解题分析】
化圆心角为弧度值,再由扇形面积公式求解即可.【题目详解】扇形的半径为,圆心角为,即,该扇形的面积为,故选.【题目点拨】本题主要考查扇形的面积公式的应用.8、A【解题分析】
函数过代入解得,再通过平移得到的图像.【题目详解】,函数过向右平移个单位得到的图象故答案选A【题目点拨】本题考查了三角函数图形,求函数表达式,函数平移,意在考查学生对于三角函数图形的理解.9、A【解题分析】
根据a,b,c依次成等差数列,,,依次成等比数列,利用等差、等比中项的性质可知,根据基本不等式求得a=c,判断出a=b=c,推出结果.【题目详解】由a,b,c依次成等差数列,有2b=a+c(1)由,,成等比数列,有(2),由(1)(2)得,又根据,当a=c时等号成立,∴可得a=c,∴,综上可得a=b=c,所以△ABC为等边三角形.故选:A.【题目点拨】本题考查三角形的形状判断,结合等差、等比数列性质及基本不等式关系可得三边关系,从而求解,考查综合分析能力,属于中等题.10、A【解题分析】
先化简集合,根据交集与并集的概念,即可得出结果。【题目详解】因为,,所以,.故选A【题目点拨】本题主要考查集合的基本运算,熟记概念即可,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解题分析】
根据极限存在首先判断出的值,然后根据极限的值计算出的值,由此可计算出的值.【题目详解】因为,所以,又因为,所以,所以.故答案为:.【题目点拨】本题考查根据极限的值求解参数,难度较易.12、【解题分析】
根据向量垂直的坐标表示列出等式,求出,再利用二倍角公式、平方关系即可求出.【题目详解】由得,,解得,.【题目点拨】本题主要考查了向量垂直的坐标表示以及二倍角公式、平方关系的应用.13、【解题分析】
由体积为的一个正方体,棱长为,全面积为,则,,球的体积为,故答案为.考点:正方体与球的表面积及体积的算法.14、2017【解题分析】,故,由此得.【题目点拨】本题主要考查函数解析式的求解方法,考查等比数列前项和的计算公式.对于函数解析式的求法,有两种,一种是换元法,另一种的变换法.解析中运用的方法就是变换法,即将变换为含有的式子.也可以令.等比数列求和公式为.15、【解题分析】
由题得(-1),解之即得a的值.【题目详解】由题得(-1),所以a=2.故答案为;2【题目点拨】本题主要考查两直线垂直的斜率关系,意在考查学生对该知识的理解掌握水平和分析推理能力.16、3【解题分析】
利用向量共线的坐标公式,列式求解.【题目详解】因为向量与向量共线,所以,故答案为:3.【题目点拨】本题考查向量共线的坐标公式,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析.【解题分析】
(1)参变分离后可得在上恒成立,利用基本不等式可求的最小值,从而得到参数的取值范围.(2)原不等式可化为,就对应方程的两根的大小关系分类讨论可得不等式的解集.【题目详解】(1)对任意的,恒成立即恒成立.因为当时,(当且仅当时等号成立),所以即.(2)不等式,即,①当即时,;②当即时,;③当即时,.综上:当时,不等式解集为;当时,不等式解集为;当时,不等式解集为.【题目点拨】含参数的一元二次不等式,其一般的解法是:先考虑对应的二次函数的开口方向,再考虑其判别式的符号,其次在判别式大于零的条件下比较两根的大小,最后根据不等号的方向和开口方向得到不等式的解.一元二次不等式的恒成立问题,参变分离后可以转化为函数的最值进行讨论,后者可利用基本不等式来求.18、(1)(2)【解题分析】
古典概型要求能够列举出所有事件和发生事件的个数,本题可以列举出所有事件,概率问题同其他的知识点结合在一起,实际上是以概率问题为载体,主要考查的是另一个知识点(1)由题意知本题是一个古典概型,试验包含的所有事件是任取三张卡片,三张卡片上的数字全部可能的结果,可以列举出,而满足条件的事件数字之和大于7的,可以从列举出的结果中看出.(2)列举出每次抽1张,连续抽取两张全部可能的基本结果,而满足条件的事件是两次抽取中至少一次抽到数字3,从前面列举出的结果中找出来.解:(Ⅰ)设A表示事件“抽取3张卡片上的数字之和大于或等于7”,任取三张卡片,三张卡片上的数字全部可能的结果是(1、2、3),(1、2、4),(1、3、4),(2、3、4),共4种,数字之和大于或等于7的是(1、2、4),(1、3、4),(2、3、4),共3种,所以P(A)=.(Ⅱ)设B表示事件“至少一次抽到2”,第一次抽1张,放回后再抽取1张的全部可能结果为:(1、1)(1、2)(1、3)(1、4)(2、1)(2、2)(2、3)(2、4)(3、1)(3、2)(3、3)(3、4)(4、1)(4、2)(4、3)(4、4),共16个事件B包含的结果有(1、2)(2、1)(2、2)(2、3)(2、4)(3、2)(4、2),共7个所以所求事件的概率为P(B)=.19、(1);(2)或.【解题分析】
(1)根据用配方法求出二次函数对称轴横坐标,可得最小值,再代入端点求得最大值,可得函数的值域;(2)由(1)可得的最大值为6,转化为求恒成立,求出m的取值范围即可.【题目详解】(1)因为,而,,,所以函数的值域为.(2)由(1)知,函数的值域为,所以的最大值为6,所以由得,解得或,故实数m的取值范围为或.【题目点拨】本题考查二次函数的值域及最值,不等式恒成立求参数取值范围,二次函数最值问题通常求出对称轴横坐标代入即可求得最值,由不等式恒成立求参数取值范围可转化为函数最值不等式问题,属于中等题.20、(Ⅰ);(Ⅱ)中位数估计值为32,平均数估计值为32.5.【解题分析】
(Ⅰ)由频率分布直方图的性质列出方程组,能求出,;(Ⅱ)由频率分布直方图,能估计该校学生每天课外阅读时间的中位数及平均值.【题目详解】(Ⅰ)由题意得,解得(Ⅱ)设该校学生每天课外阅读时间的中位数估计值为,则解得:.该校学生每天课外阅读时间的平均数估计值为:.答:该校学生每天课外阅读时间的中位数估计值为32,平均数估计值为32.5.【题目点拨】本题考查频率、中位数、平均数的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题.21、(I)0.045;(II)75;(III)0.7【解题分析】
(Ⅰ)根据频率之和为1,结合题中数据,即可求出结果;(II)每组的中间值乘以该组频率,再求和,即可得出结果;(III)用列举法列举出总的基本事件,以及满足条件的基本事件,基本事件
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年南京客运资格专业能力考试
- 2024年黄山道路旅客运输考卷
- 济宁学院《芭蕾舞基训1》2021-2022学年第一学期期末试卷
- 传统肉类产业规模缩减趋势分析
- 风力发电场课程设计
- 量子光学导论课程设计
- 风筝线描班课程设计
- 2024-2030年中国航空用铝行业竞争格局及产销需求预测研究报告
- 2024-2030年中国美发护发产品行业消费态势与营销前景预测报告
- 2024-2030年中国禽肉行业发展态势与竞争策略分析研究报告
- SJG 77-2020 房屋建筑工程造价文件分部分项和措施项目划分标准-高清现行
- 7180型自动生化分析仪仪器标准操作规程
- 蓝色企业发展历程时间轴PPT模板课件
- 经方在治疗糖尿病及其并发症中的应用
- 语文教师专业成长ppt课件
- 第13课__生活与科幻
- 《电磁屏蔽技术》PPT课件
- 灯杆生产工艺流程
- 妇产科急诊及急救PPT课件
- 仪陇县先锋镇小学校迎国检应急预案
- XX理工大学“高等教育质量监测国家数据平台”数据采集工作实施办法
评论
0/150
提交评论