湖南省衡阳县创新实验班2024届数学高一下期末教学质量检测模拟试题含解析_第1页
湖南省衡阳县创新实验班2024届数学高一下期末教学质量检测模拟试题含解析_第2页
湖南省衡阳县创新实验班2024届数学高一下期末教学质量检测模拟试题含解析_第3页
湖南省衡阳县创新实验班2024届数学高一下期末教学质量检测模拟试题含解析_第4页
湖南省衡阳县创新实验班2024届数学高一下期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省衡阳县创新实验班2024届数学高一下期末教学质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.“”是“直线(m+1)x+3my+2=0与直线(m-2)x+(m+1)y-1=0相互垂直”的()A.充分必要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件2.已知与之间的一组数据如表,若与的线性回归方程为,则的值为A.1 B.2 C.3 D.43.若直线kx+(1-k)y-3=0和直线(k-1)x+(2k+3)y-2=0互相垂直,则k=()A.-3或-1 B.3或1 C.-3或1 D.-1或34.若集合A={x|2≤x<4}, B={x|x>3}A.{x|3≤x<4} B.{x|3<x<4} C.{x|2≤x<3} D.{x|2≤x≤3}5.将函数f(x)=sin(ωx+)(ω>0)的图象向左平移个单位,所得到的函数图象关于y轴对称,则函数f(x)的最小正周期不可能是()A. B. C. D.6.掷一枚均匀的硬币,如果连续抛掷2020次,那么抛掷第2019次时出现正面向上的概率是()A. B. C. D.7.已知,,,若,则等于()A. B. C. D.8.棱长为2的正方体的内切球的体积为()A. B. C. D.9.函数的最小正周期为()A. B. C. D.10.产能利用率是指实际产出与生产能力的比率,工业产能利用率是衡量工业生产经营状况的重要指标.下图为国家统计局发布的2015年至2018年第2季度我国工业产能利用率的折线图.在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2016年第二季度与2015年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2015年第二季度与2015年第一季度相比较.据上述信息,下列结论中正确的是()A.2015年第三季度环比有所提高 B.2016年第一季度同比有所提高C.2017年第三季度同比有所提高 D.2018年第一季度环比有所提高二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若,则的取值围为_________.12.在数列中,,,,则_____________.13.已知直线过点,,则直线的倾斜角为______.14.若数据的平均数为,则____________.15.点从点出发,沿单位圆顺时针方向运动弧长到达点,则点的坐标为__________.16.已知数列满足:,,则_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知为等差数列,前项和为,是首项为的等比数列,且公比大于,,,.(1)求和的通项公式;(2)求数列的前项和.18.如图,在四边形中,,,.(1)若,求的面积;(2)若,,求的长.19.已知等比数列的前n项和为,,且.(1)求数列的通项公式;(2)若数列为递增数列,数列满足,求数列的前n项和.(3)在条件(2)下,若不等式对任意正整数n都成立,求的取值范围.20.的内角的对边分别为,且.(1)求;(2)若,点在边上,,,求的面积.21.在等比数列中,,.(1)求的通项公式;(2)若,求数列的前项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】试题分析:当时,直线为和直线,斜率之积等于,所以垂直;当两直线垂直时,,解得:或,根据充分条件必要条件概念知,“”是“直线(m+1)x+3my+2=0与直线(m-2)x+(m+1)y-1=0相互垂直”的充分不必要条件,故选B.考点:1、充分条件、必要条件;2、两条直线垂直的关系.2、D【解题分析】

先求出样本中心点,代入回归直线方程,即可求得的值,得到答案.【题目详解】由题意,根据表中的数据,可得,又由回归直线方程过样本中心点,所以,解得,故选D.【题目点拨】本题主要考查了线性回归直线方程的应用,其中解答中熟记线性回归直线方程的基本特征是解答的关键,着重考查了推理与运算能力,属于基础题.3、C【解题分析】

直接利用两直线垂直的充要条件列方程求解即可.【题目详解】因为直线kx+(1-k)y-3=0和直线(k-1)x+(2k+3)y-2=0互相垂直,所以k(k-1)+(1-k)(2k+3)=0,解方程可得k=1或k=-3,故选C.【题目点拨】本题主要考查直线与直线垂直的充要条件,属于基础题.对直线位置关系的考查是热点命题方向之一,这类问题以简单题为主,主要考查两直线垂直与两直线平行两种特殊关系:在斜率存在的前提下,(1)l1||l2⇔k14、B【解题分析】

根据交集定义计算.【题目详解】由题意A∩B={x|3<x<4}.故选B.【题目点拨】本题考查集合的交集运算,属于基础题.5、D【解题分析】

利用函数y=Asin(ωx+φ)的图象变换规律,对称性和周期性,求得函数的最小正周期为,由此得出结论.【题目详解】解:将函数的图象向左平移个单位,可得的图象,根据所得到的函数图象关于轴对称,可得,即,.函数的最小正周期为,则函数的最小正周期不可能是,故选.【题目点拨】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,对称性和周期性,属于基础题.6、B【解题分析】

根据概率的性质直接得到答案.【题目详解】根据概率的性质知:每次正面向上的概率为.故选:.【题目点拨】本题考查了概率的性质,属于简单题.7、A【解题分析】

根据向量的坐标运算法则,依据题意列出等式求解.【题目详解】由题知:,,,因为,所以,故,故选:A.【题目点拨】本题考查向量的坐标运算,属于基础题.8、C【解题分析】

根据正方体的内切球的直径与正方体的棱长相等可得结果.【题目详解】因为棱长为2的正方体的内切球的直径与正方体的棱长相等,所以直径,内切球的体积为,故选:C.【题目点拨】本题主要考查正方体的内切球的体积,利用正方体的内切球的直径与正方体的棱长相等求出半径是解题的关键.9、D【解题分析】,函数的最小正周期为,选.【题目点拨】求三角函数的最小正周期,首先要利用三角公式进行恒等变形,化简函数解析式,把函数解析式化为的形式,然后利用周期公式求出最小正周期,另外还要注意函数的定义域.10、C【解题分析】

根据同比和环比的定义比较两期数据得出结论.【题目详解】解:2015年第二季度利用率为74.3%,第三季度利用率为74.0%,故2015年第三季度环比有所下降,故A错误;2015年第一季度利用率为74.2%,2016年第一季度利用率为72.9%,故2016年第一季度同比有所下降,故B错误;2016年底三季度利用率率为73.2%,2017年第三季度利用率为76.8%,故2017年第三季度同比有所提高,故C正确;2017年第四季度利用率为78%,2018年第一季度利用率为76.5%,故2018年第一季度环比有所下降,故D错误.故选C.【题目点拨】本题考查了新定义的理解,图表认知,考查分析问题解决问题的能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

由函数,根据,得到,再由,得到,结合余弦函数的性质,即可求解.【题目详解】由题意,函数,又由,即,即,因为,则,所以或,即或,所以实数的取值围为.故答案为:.【题目点拨】本题主要考查了余弦的倍角公式,以及三角不等式的求解,其中解答中熟练应用余弦函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.12、5【解题分析】

利用递推关系式依次求值,归纳出:an+6=an,再利用数列的周期性,得解.【题目详解】∵a1=1,a2=5,an+2=an+1-an(n∈N*),∴a3=a2-a1=5-1=4,同理可得:a4=-1,a5=-5,a6=-4,a7=1,a8=5,…,∴an+6=an.则a2018=a6×336+2=a2=5【题目点拨】本题考查了递推关系、数列的周期性,考查了推理能力与计算能力.13、【解题分析】

根据两点求斜率的公式求得直线的斜率,然后求得直线的倾斜角.【题目详解】依题意,故直线的倾斜角为.【题目点拨】本小题主要考查两点求直线斜率的公式,考查直线斜率和倾斜角的对应关系,属于基础题.14、【解题分析】

根据求平均数的公式,得到关于的方程,求得.【题目详解】由题意得:,解得:,故填:.【题目点拨】本题考查求一组数据的平均数,考查基本数据处理能力.15、【解题分析】

由题意可得OQ恰好是角的终边,利用任意角的三角函数的定义,求得Q点的坐标.【题目详解】点P从点出发,沿单位圆顺时针方向运动弧长到达Q点,则OQ恰好是角的终边,故Q点的横坐标,纵坐标为,故答案为:【题目点拨】本题主要考查任意角的三角函数的定义,属于容易题.16、【解题分析】

从开始,直接代入公式计算,可得的值.【题目详解】解:由题意得:,,,,故答案为:.【题目点拨】本题主要考查数列的递推公式及数列的性质,相对简单.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),,;(2),.【解题分析】

(1)由等差数列和等比数列的基本量法求数列的通项公式;(2)用错位相减法求和.【题目详解】(1)数列公比为,则,∵,∴,∴,的公差为,首项是,则,,∴,解得.∴.(2),数列的前项和记为,,①,②①-②得:,∴.【题目点拨】本题考查等差数列和等比数列的通项公式,考查等差数列的前n项和及错位相减法求和.在求等差数列和等比数列的通项公式及前n项和公式时,基本量法是最基本也是最重要的方法,务必掌握,数列求和时除公式法外,有些特殊方法也需掌握:错位相减法,裂项相消法,分组(并项)求和法等等.18、(1);(2).【解题分析】

(1)由余弦定理求出BC,由此能求出△ABC的面积.(2)设∠BAC=θ,AC=x,由正弦定理得从而,在中,由正弦定理得,建立关于θ的方程,由此利用正弦定理能求出sin∠CAD.再利用余弦定理可得结果.【题目详解】(1)因为,,,所以,即,所以.所以.(2)设,,则,在中,由正弦定理得:,所以;在中,,所以.即,化简得:,所以,所以,,所以在中,.即,解得或(舍).【题目点拨】本题考查正、余弦定理在解三角形中的应用,考查了引入角的技巧方法,考查运算求解能力,考查函数与方程思想,是中档题.19、(1)当时:;当时:(2)(3)【解题分析】

(1)直接利用等比数列公式得到答案.(2)利用错位相减法得到答案.(3)将不等式转化为,根据双勾函数求数列的最大值得到答案.【题目详解】(1)当时:当时:(2)数列为递增数列,,两式相加,化简得到(3)设原式(为奇数)根据双勾函数知:或时有最大值.时,原式时,原式故【题目点拨】本题考查了等比数列的通项公式,错位相减法求前N项和,恒成立问题,将恒成立问题转化为利用双勾函数求数列的最大值是解题的关键,此题综合性强,计算量大,意在考查学生对于数列公式方法的灵活运用.20、(1);(2).【解题分析】

(1)由正弦定理、三角函数恒等变换化简已知可得:,结合范围,可得,进而可求A的值.(2)在△ADC中,由正弦定理可得,可得,利用三角形内角和定理可求,即可求得,再利用三角形的面积公式即可计算得解.【题目详解】(1)∵,∴由正弦定理可得:,∴可得:,可得:,∵,∴,可得:,∵,∴,∴,可得:.(2)∵,点D在边上,,∴在中,由正弦定理,可得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论