高中数学导数及其应用知识点总结及练习教案_第1页
高中数学导数及其应用知识点总结及练习教案_第2页
高中数学导数及其应用知识点总结及练习教案_第3页
高中数学导数及其应用知识点总结及练习教案_第4页
高中数学导数及其应用知识点总结及练习教案_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

明轩教育您身边的个性化辅导专家电话AGEPAGE1教师:胡茂友学生:时间:_2016_年__月日段第__次课教师学生姓名上课日期月日学科数学年级高二教材版本人教版类型知识讲解:√考题讲解:√本人课时统计第()课时共()课时学案主题《导数及其应用》复习课时数量第()课时授课时段教学目标1.了解瞬时速度、瞬时变化率的概念;

2.理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵;

3.会求函数在某点的导数教学重点、难点掌握导数的概念和求法。掌握利用导数研究函数的单调性及导数的应用。教学过程知识点复习【知识点梳理】《导数及其应用》知识点总结一、导数的概念和几何意义1.函数的平均变化率:函数在区间上的平均变化率为:。即:注1:其中是自变量的改变量,可正,可负,可零。注2:函数的平均变化率可以看作是物体运动的平均速度。2.导数的定义:设函数在区间上有定义,,若无限趋近于0时,比值无限趋近于一个常数A,则称函数在处可导,并称该常数A为函数在处的导数,记作。函数在处的导数的实质是在该点的瞬时变化率。注意:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。3.求函数导数的基本步骤:(1)求函数的增量;(2)求平均变化率:;(3)取极限,当无限趋近与0时,无限趋近与一个常数A,则.4.导数的几何意义:函数在处的导数就是曲线在点处的切线的斜率。由此,可以利用导数求曲线的切线方程,具体求法分两步:(1)求出在x0处的导数,即为曲线在点处的切线的斜率;(2)在已知切点坐标和切线斜率的条件下,求得切线方程为。当点不在上时,求经过点P的的切线方程,可设切点坐标,由切点坐标得到切线方程,再将P点的坐标代入确定切点。特别地,如果曲线在点处的切线平行与y轴,这时导数不存在,根据切线定义,可得切线方程为。5.导数的物理意义:质点做直线运动的位移S是时间t的函数,则表示瞬时速度,表示瞬时加速度。二、导数的运算1.常见函数的导数:(1)(k,b为常数); (2)(C为常数);(3); (4);(5); (6);(7); (8)(α为常数);(9); (10);(11); (12);(13); (14)。2.函数的和、差、积、商的导数(若,均可导):(1);(2)(C为常数);(3); (4)。3.简单复合函数的导数:若,则,即。三、导数的应用1.求函数的单调性:利用导数求函数单调性的基本方法:设函数在区间内可导,(1)如果恒,则函数在区间上为增函数;(2)如果恒,则函数在区间上为减函数;(3)如果恒,则函数在区间上为常数函数。利用导数求函数单调性的基本步骤:=1\*GB3①求函数的定义域;=2\*GB3②求导数;=3\*GB3③解不等式,解集在定义域内的不间断区间为增区间;=4\*GB3④解不等式,解集在定义域内的不间断区间为减区间。反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数在区间内可导,(1)如果函数在区间上为增函数,则(其中使的值不构成区间);(2)如果函数在区间上为减函数,则(其中使的值不构成区间);(3)如果函数在区间上为常数函数,则恒成立。2.求函数的极值:A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件10.函数的图像如图所示,下列数值排序正确的是()(A)y(B)(C)(D)O1234x二.填空题(本大题共4小题,共20分)11.函数的单调递增区间是____.12.已知函数在区间上的最大值与最小值分别为,则__.13.点P在曲线上移动,设在点P处的切线的倾斜角为为,则的取值范围是14.已知函数(1)若函数在总是单调函数,则的取值范围是.(2)若函数在上总是单调函数,则的取值范围.(3)若函数在区间(-3,1)上单调递减,则实数的取值范围是.三.解答题(本大题共4小题,共12+12+14+14+14+14=80分)15.用长为18cm的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?16.设函数在及时取得极值.(1)求a、b的值;(2)若对于任意的,都有成立,求c的取值范围.17.设函数分别在处取得极小值、极大值.平面上点的坐标分别为、,该平面上动点满足,点是点关于直线的对称点,.求(Ⅰ)求点的坐标;(Ⅱ)求动点的轨迹方程.18. 已知函数 (1)求曲线在点处的切线方程; (2)若关于的方程有三个不同的实根,求实数的取值范围.19.已知(1)当时,求函数的单调区间。(2)当时,讨论函数的单调增区间。(3)是否存在负实数,使,函数有最小值-3?20.已知函数,,其中.(1)若是函数的极值点,求实数的值;(2)若对任意的(为自然对数的底数)都有≥成立,求实数的取值范围.课后作业练习题学生成长记录本节课教学计划完成情况:照常完成□提前完成□延后完成□____________________________学生的接受程度:54321______________________________学生的课堂表现:很积极□比较积极□一般积极□不积极□___________________________学生上次作业完成情况:优□

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论