版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省长春六中、八中、十一中等省重点中学2023-2024学年数学高三第一学期期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图所示,已知某几何体的三视图及其尺寸(单位:),则该几何体的表面积为()A. B.C. D.2.执行如图所示的程序框图,当输出的时,则输入的的值为()A.-2 B.-1 C. D.3.已知函数,则不等式的解集为()A. B. C. D.4.已知的内角的对边分别是且,若为最大边,则的取值范围是()A. B. C. D.5.若x,y满足约束条件则z=的取值范围为()A.[] B.[,3] C.[,2] D.[,2]6.已知双曲线的焦距为,过左焦点作斜率为1的直线交双曲线的右支于点,若线段的中点在圆上,则该双曲线的离心率为()A. B. C. D.7.如图是二次函数的部分图象,则函数的零点所在的区间是()A. B. C. D.8.已知四棱锥中,平面,底面是边长为2的正方形,,为的中点,则异面直线与所成角的余弦值为()A. B. C. D.9.已知向量,满足,在上投影为,则的最小值为()A. B. C. D.10.一辆邮车从地往地运送邮件,沿途共有地,依次记为,,…(为地,为地).从地出发时,装上发往后面地的邮件各1件,到达后面各地后卸下前面各地发往该地的邮件,同时装上该地发往后面各地的邮件各1件,记该邮车到达,,…各地装卸完毕后剩余的邮件数记为.则的表达式为().A. B. C. D.11.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,其中左视图中三角形为等腰直角三角形,则该几何体外接球的体积是()A. B.C. D.12.函数在上的大致图象是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.(5分)如图是一个算法的流程图,若输出的值是,则输入的值为____________.14.能说明“在数列中,若对于任意的,,则为递增数列”为假命题的一个等差数列是______.(写出数列的通项公式)15.若x,y满足,且y≥−1,则3x+y的最大值_____16.在四棱锥中,是边长为的正三角形,为矩形,,.若四棱锥的顶点均在球的球面上,则球的表面积为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)求曲线在点处的切线方程;(2)求函数的极小值;(3)求函数的零点个数.18.(12分)如图,在四棱锥中,底面,,,,为的中点,是上的点.(1)若平面,证明:平面.(2)求二面角的余弦值.19.(12分)在世界读书日期间,某地区调查组对居民阅读情况进行了调查,获得了一个容量为200的样本,其中城镇居民140人,农村居民60人.在这些居民中,经常阅读的城镇居民有100人,农村居民有30人.(1)填写下面列联表,并判断能否有99%的把握认为经常阅读与居民居住地有关?城镇居民农村居民合计经常阅读10030不经常阅读合计200(2)调查组从该样本的城镇居民中按分层抽样抽取出7人,参加一次阅读交流活动,若活动主办方从这7位居民中随机选取2人作交流发言,求被选中的2位居民都是经常阅读居民的概率.附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82820.(12分)已知椭圆,点,点满足(其中为坐标原点),点在椭圆上.(1)求椭圆的标准方程;(2)设椭圆的右焦点为,若不经过点的直线与椭圆交于两点.且与圆相切.的周长是否为定值?若是,求出定值;若不是,请说明理由.21.(12分)如图,在四棱锥中,底面为菱形,底面,.(1)求证:平面;(2)若直线与平面所成的角为,求平面与平面所成锐二面角的余弦值.22.(10分)设函数,其中.(Ⅰ)当为偶函数时,求函数的极值;(Ⅱ)若函数在区间上有两个零点,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
由三视图知,该几何体是一个圆锥,其母线长是5,底面直径是6,据此可计算出答案.【详解】由三视图知,该几何体是一个圆锥,其母线长是5,底面直径是6,该几何体的表面积.故选:C【点睛】本题主要考查了三视图的知识,几何体的表面积的计算.由三视图正确恢复几何体是解题的关键.2、B【解析】若输入,则执行循环得结束循环,输出,与题意输出的矛盾;若输入,则执行循环得结束循环,输出,符合题意;若输入,则执行循环得结束循环,输出,与题意输出的矛盾;若输入,则执行循环得结束循环,输出,与题意输出的矛盾;综上选B.3、D【解析】
先判断函数的奇偶性和单调性,得到,且,解不等式得解.【详解】由题得函数的定义域为.因为,所以为上的偶函数,因为函数都是在上单调递减.所以函数在上单调递减.因为,所以,且,解得.故选:D【点睛】本题主要考查函数的奇偶性和单调性的判断,考查函数的奇偶性和单调性的应用,意在考查学生对这些知识的理解掌握水平.4、C【解析】
由,化简得到的值,根据余弦定理和基本不等式,即可求解.【详解】由,可得,可得,通分得,整理得,所以,因为为三角形的最大角,所以,又由余弦定理,当且仅当时,等号成立,所以,即,又由,所以的取值范围是.故选:C.【点睛】本题主要考查了代数式的化简,余弦定理,以及基本不等式的综合应用,试题难度较大,属于中档试题,着重考查了推理与运算能力.5、D【解析】
由题意作出可行域,转化目标函数为连接点和可行域内的点的直线斜率的倒数,数形结合即可得解.【详解】由题意作出可行域,如图,目标函数可表示连接点和可行域内的点的直线斜率的倒数,由图可知,直线的斜率最小,直线的斜率最大,由可得,由可得,所以,,所以.故选:D.【点睛】本题考查了非线性规划的应用,属于基础题.6、C【解析】
设线段的中点为,判断出点的位置,结合双曲线的定义,求得双曲线的离心率.【详解】设线段的中点为,由于直线的斜率是,而圆,所以.由于是线段的中点,所以,而,根据双曲线的定义可知,即,即.故选:C【点睛】本小题主要考查双曲线的定义和离心率的求法,考查直线和圆的位置关系,考查数形结合的数学思想方法,属于中档题.7、B【解析】
根据二次函数图象的对称轴得出范围,轴截距,求出的范围,判断在区间端点函数值正负,即可求出结论.【详解】∵,结合函数的图象可知,二次函数的对称轴为,,,∵,所以在上单调递增.又因为,所以函数的零点所在的区间是.故选:B.【点睛】本题考查二次函数的图象及函数的零点,属于基础题.8、B【解析】
由题意建立空间直角坐标系,表示出各点坐标后,利用即可得解.【详解】平面,底面是边长为2的正方形,如图建立空间直角坐标系,由题意:,,,,,为的中点,.,,,异面直线与所成角的余弦值为即为.故选:B.【点睛】本题考查了空间向量的应用,考查了空间想象能力,属于基础题.9、B【解析】
根据在上投影为,以及,可得;再对所求模长进行平方运算,可将问题转化为模长和夹角运算,代入即可求得.【详解】在上投影为,即又本题正确选项:【点睛】本题考查向量模长的运算,对于含加减法运算的向量模长的求解,通常先求解模长的平方,再开平方求得结果;解题关键是需要通过夹角取值范围的分析,得到的最小值.10、D【解析】
根据题意,分析该邮车到第站时,一共装上的邮件和卸下的邮件数目,进而计算可得答案.【详解】解:根据题意,该邮车到第站时,一共装上了件邮件,需要卸下件邮件,则,故选:D.【点睛】本题主要考查数列递推公式的应用,属于中档题.11、C【解析】
作出三视图所表示几何体的直观图,可得直观图为直三棱柱,并且底面为等腰直角三角形,即可求得外接球的半径,即可得外接球的体积.【详解】如图为几何体的直观图,上下底面为腰长为的等腰直角三角形,三棱柱的高为4,其外接球半径为,所以体积为.故选:C【点睛】本题考查三视图还原几何体的直观图、球的体积公式,考查空间想象能力、运算求解能力,求解时注意球心的确定.12、D【解析】
讨论的取值范围,然后对函数进行求导,利用导数的几何意义即可判断.【详解】当时,,则,所以函数在上单调递增,令,则,根据三角函数的性质,当时,,故切线的斜率变小,当时,,故切线的斜率变大,可排除A、B;当时,,则,所以函数在上单调递增,令,,当时,,故切线的斜率变大,当时,,故切线的斜率变小,可排除C,故选:D【点睛】本题考查了识别函数的图像,考查了导数与函数单调性的关系以及导数的几何意义,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、或【解析】
依题意,当时,由,即,解得;当时,由,解得或(舍去).综上,得或.14、答案不唯一,如【解析】
根据等差数列的性质可得到满足条件的数列.【详解】由题意知,不妨设,则,很明显为递减数列,说明原命题是假命题.所以,答案不唯一,符合条件即可.【点睛】本题考查对等差数列的概念和性质的理解,关键是假设出一个递减的数列,还需检验是否满足命题中的条件,属基础题.15、5.【解析】
由约束条件作出可行域,令z=3x+y,化为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】由题意作出可行域如图阴影部分所示.设,当直线经过点时,取最大值5.故答案为:5【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.16、【解析】
做中点,的中点,连接,由已知条件可求出,运用余弦定理可求,从而在平面中建立坐标系,则以及的外接圆圆心为和长方形的外接圆圆心为在该平面坐标系的坐标可求,通过球心满足,即可求出的坐标,从而可求球的半径,进而能求出球的表面积.【详解】解:如图做中点,的中点,连接,由题意知,则设的外接圆圆心为,则在直线上且设长方形的外接圆圆心为,则在上且.设外接球的球心为在中,由余弦定理可知,.在平面中,以为坐标原点,以所在直线为轴,以过点垂直于轴的直线为轴,如图建立坐标系,由题意知,在平面中且设,则,因为,所以解得.则所以球的表面积为.故答案为:.【点睛】本题考查了几何体外接球的问题,考查了球的表面积.关于几何体的外接球的做题思路有:一是通过将几何体补充到长方体中,将几何体的外接球等同于长方体的外接球,求出体对角线即为直径,但这种方法适用性较差;二是通过球的球心与各面外接圆圆心的连线与该平面垂直,设半径列方程求解;三是通过空间、平面坐标系进行求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)极小值;(3)函数的零点个数为.【解析】
(1)求出和的值,利用点斜式可得出所求切线的方程;(2)利用导数分析函数的单调性,进而可得出该函数的极小值;(3)由当时,以及,结合函数在区间上的单调性可得出函数的零点个数.【详解】(1)因为,所以.所以,.所以曲线在点处的切线为;(2)因为,令,得或.列表如下:0极大值极小值所以,函数的单调递增区间为和,单调递减区间为,所以,当时,函数有极小值;(3)当时,,且.由(2)可知,函数在上单调递增,所以函数的零点个数为.【点睛】本题考查利用导数求函数的切线方程、极值以及利用导数研究函数的零点问题,考查分析问题和解决问题的能力,属于中等题.18、(1)证明见解析(2)【解析】
(1)因为,利用线面平行的判定定理可证出平面,利用点线面的位置关系,得出和,由于底面,利用线面垂直的性质,得出,且,最后结合线面垂直的判定定理得出平面,即可证出平面.(2)由(1)可知,,两两垂直,建立空间直角坐标系,标出点坐标,运用空间向量坐标运算求出所需向量,分别求出平面和平面的法向量,最后利用空间二面角公式,即可求出的余弦值.【详解】(1)证明:因为,平面,平面,所以平面,因为平面,平面,所以可设平面平面,又因为平面,所以.因为平面,平面,所以,从而得.因为底面,所以.因为,所以.因为,所以平面.综上,平面.(2)解:由(1)可得,,两两垂直,以为原点,,,所在直线分别为,,轴,建立如图所示的空间直角坐标系.因为,所以,则,,,,所以,,,.设是平面的法向量,由取取,得.设是平面的法向量,由得取,得,所以,即的余弦值为.【点睛】本题考查线面垂直的判定和空间二面角的计算,还运用线面平行的性质、线面垂直的判定定理、点线面的位置关系、空间向量的坐标运算等,同时考查学生的空间想象能力和逻辑推理能力.19、(1)见解析,有99%的把握认为经常阅读与居民居住地有关.(2)【解析】
(1)根据题中数据得到列联表,然后计算出,与临界值表中的数据对照后可得结论;(2)由题意得概率为古典概型,根据古典概型概率公式计算可得所求.【详解】(1)由题意可得:城镇居民农村居民合计经常阅读10030130不经常阅读403070合计14060200则,所以有99%的把握认为经常阅读与居民居住地有关.(2)在城镇居民140人中,经常阅读的有100人,不经常阅读的有40人.采取分层抽样抽取7人,则其中经常阅读的有5人,记为、、、、;不经常阅读的有2人,记为、.从这7人中随机选取2人作交流发言,所有可能的情况为,,,,,,,,,,,,,,,,,,,,,共21种,被选中的位居民都是经常阅读居民的情况有种,所求概率为.【点睛】本题主要考查古典概型的概率计算,以及独立性检验的应用,利用列举法是解决本题的关键,考查学生的计算能力.对于古典概型,要求事件总数是可数的,满足条件的事件个数可数,使得满足条件的事件个数除以总的事件个数即可,属于中档题.20、(1)(2)是,【解析】
(1)设,根据条件可求出的坐标,再利用在椭圆上,代入椭圆方程求出即可;(2)设运用勾股定理和点满足椭圆方程,求出,,再利用焦半径公式表示出,进而求出周长为定值.【详解】(1)设,因为,即则,即,因为均在上,代入得,解得,所以椭圆的方程为;(2)由(1)得,作出示意图,设切点为,则,同理即,所以,又,则的周长,所以周长为定值.【点睛】标准方程的求解,椭圆中的定值问题,考查焦半径公式的运用,考查逻辑推理能力和运算求解能力,难度较难.21、(1)证明见解析(2)【解析】
(1)由底面为菱形,得,再由底面,可得,结合线面垂直的判定可得平面;(2)以点为坐标原点,以所在直线及过点且垂直于平面的直线分别为轴建立空间直角坐标系,分别求出平面与平面的一个法向量,由两法向量所成角的余弦值可得平面与平面所成锐二面角的余弦值.【详解】(1)证明:底面为菱形,,底面,平面,又,平面,平面;(2)解:,,为等边三角形,.底面,是直线与平面所成的角为,在中,由,解得.如图,以点为坐标原点,以所在直线及过点且垂直于平面的直线分别为轴建立空间直角坐标系.则,,,,.,,,.设平面与平面的一个法向量分别为,.由,取,得;由,取,得..平面与平面所成锐二面角的余弦值为.【点睛】本题考查直线与平面垂直的判定,考查空间想象能力与思维能力,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 创业投资信托协议书(2篇)
- 2024年草船借箭教学设计(53篇)
- 2024年福建省莆田市涵江区三江口镇招聘社区工作者考前自测高频考点模拟试题(共500题)含答案
- 2024年福建省《消防员资格证之一级防火考试》必刷500题标准卷
- 黄金卷3-【赢在中考·黄金八卷】(原卷版)
- 2024届四川省绵阳市高三上学期第二次诊断性考试(二模)文综试题
- 2025届南开中学初中考生物押题试卷含解析
- 互补发电系统行业深度研究报告
- 2025公司质押借款合同范本
- 2024年度天津市公共营养师之二级营养师综合检测试卷A卷含答案
- 冀少版八年级下册生物期末复习知识点考点提纲
- 八年级语文上册《作文》专项测试卷及答案
- 《ISO56001-2024创新管理体系 - 要求》之26:“10改进”解读和应用指导材料(雷泽佳编制-2024)
- 《ISO56001-2024创新管理体系 - 要求》之23:“8运行-8.3创新过程”解读和应用指导材料(雷泽佳编制-2024)
- 函数的零点与方程的解 教学设计 高一上学期数学人教A版(2019)必修第一册
- 【安踏集团国际化战略环境的PEST分析及SWOT分析4100字(论文)】
- 部编版高中语文必修上册第二单元测试题及答案
- 2024年高考地理试卷(浙江)(1月)(解析卷)
- 《肠造口并发症的分型与分级标准(2023版)》解读
- 清热解毒片的复方配伍研究
- 顶管工程安全措施和操作规程
评论
0/150
提交评论