版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题05相似三角形中的基本模型--对角互补模型相似三角形在中考数学几何模块中占据着重要地位。相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了。本专题就对角互补模型进行梳理及对应试题分析,方便掌握。模型1.对角互补模型(相似模型)【模型解读】四边形或多边形构成的几何图形中,相对的角互补。该题型常用到的辅助线主要是顶定点向两边做垂线,从而证明两个三角形相似.【常见模型及结论】1)对角互补相似1 条件:如图,在Rt△ABC中,∠C=∠EOF=90°,点O是AB的中点,辅助线:过点O作OD⊥AC,垂足为D,过点O作OH⊥BC,垂足为H,结论:①△ODE∼△OHF;②(思路提示:).2)对角互补相似 2条件:如图,已知∠AOB=∠DCE=90°,∠BOC=.辅助线:作法1:如图1,过点C作CF⊥OA,垂足为F,过点C作CG⊥OB,垂足为G;结论:①△ECG∼△DCF;②CE=CD·.(思路提示:,CF=OG,在Rt△COG中,)辅助线:作法2:如图2,过点C作CF⊥OC,交OB于F;结论:①△CFE∼△COD;②CE=CD·.(思路提示:,在Rt△OCF中,)3)对角互补相似3 条件:已知如图,四边形ABCD中,∠B+∠D=180°辅助线:过点D作DE⊥BA,垂足为E,过点D作DF⊥BC,垂足为F;结论:①△DAE∼△DCF;②ABCD四点共圆。例1.(2023·重庆·九年级期中)如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,在Rt△MPN中,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=________.例2.(2023·河南南阳·九年级统考阶段练习)如图,在等腰直角中,,,过点作射线,为射线上一点,在边上(不与重合)且,与交于点.(1)求证:;(2)求证:;(3)如果,求证:.例3.(河南省鹤壁市致远中学2021-2022学年九年级上学期第二阶段考试数学试题)已知在Rt△ABC中,∠BAC=90°,AB=2,AC=6,D为BC边上的一点.过点D作射线DE⊥DF,分别交边AB,AC于点E,F.(1)当D为BC的中点,且DE⊥AB,DF⊥AC时,如图①,______.(2)①若D为BC的中点,将∠EDF绕点D旋转到图②位置时,______.②若改变点D的位置,且时,求的值,请就图③的情形写出解答过程.(3)如图③连接EF,当BD=______时,△DEF与△ABC相似.例4.(2022·山东·宁阳县九年级期末)如图1,将直角三角板放在正方形上,使三角板的直角顶点与正方形的顶点重合,三角板的一边交边于点,另一边交的延长线于点.(1)求证:;(2)如图2,移动三角板,使顶点始终在正方形的对角线上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由;(3)如图3,将(2)中的“正方形”改为“矩形”,且使三角板的一边经过点,其他条件不变,若,,则______.例5.(2023·河南信阳·统考二模)如图,在Rt△ABC中,∠ACB=90°,,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则=;(2)数学思考:①如图2,若点E在线段AC上,则=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.例6.(2023浙江中考二模)(1)特例感知:如图1,已知在RtABC中,∠BAC=90°,AB=AC,取BC边上中点D,连接AD,点E为AB边上一点,连接DE,作DF⊥DE交AC于点F,求证:BE=AF;(2)探索发现:如图2,已知在RtABC中,∠BAC=90°,AB=AC=3,取BC边上中点D,连接AD,点E为BA延长线上一点,AE=1,连接DE,作DF⊥DE交AC延长线于点F,求AF的长;(3)类比迁移:如图3,已知在ABC中,∠BAC=120°,AB=AC=4,取BC边上中点D,连接AD,点E为射线BA上一点(不与点A、点B重合),连接DE,将射线DE绕点D顺时针旋转30°交射线CA于点F,当AE=4AF时,求AF的长.课后专项训练1.(2023·山西临汾·统考二模)在菱形中,,对角线交于点,分别是边上的点,且与交于点,则的值为.
2.(2023·江苏扬州·八年级校考阶段练习)如图,已知△ABC是等边三角形,D是AC的中点,F为AB边上一点,且AF=2BF,E为射线BC上一点,∠EDF=120°,则=.3.(2023青岛版九年级月考)如图,在中,,,直角的顶点在上,、分别交、于点、,绕点任意旋转.当时,的值为;当时,为.(用含的式子表示)4.(2023·内蒙古·统考中考真题)如图,在中,,将绕点A逆时针方向旋转,得到.连接,交于点D,则的值为.
5.(2023·浙江·九年级专题练习)如图,在中,,D,M,N分别在直线,直线,直线上,(1)若D是中点,,求;(2)若点D,M,N分别在,,的延长线上,且,,求.6.(2023·安徽·九年级专题练习)点是内一点,平分,延长交于点,延长交于点.(1)如图,若,证明:;(2)如图,若,证明:;(3)如图,若,,,,求的值.
7.(2023吉林九年级上学期期末数学试题)已知在中,,,,D为BC边上的一点.过点D用射线,分别交边于点E,F.
(1)当D为的中点,且时,如图①,______;(2)若D为BC的中点,将绕点D旋转到图②位置时,求的值;(3)若改变点D的位置,且时,如图③,则______(用含m,n的代数式表示).8.(2023江苏九年级月考)如图,矩形ABCD中,∠ACB=30°,将一块直角三角板的直角顶点P放在两对角线AC,BD的交点处,以点P为旋转中心转动三角板,并保证三角板的两直角边分别于边AB,BC所在的直线相交,交点分别为E,F.(1)当PE⊥AB,PF⊥BC时,如图1,则的值为;(2)现将三角板绕点P逆时针旋转α(0°<α<60°)角,如图2,求的值;9.(2023陕西省西安市灞桥区中考数学模拟试卷)如图1,四边形ABCD是矩形,点P是对角线AC上的一个动点(不与A、C重合),过点P作PE⊥CD于点E,连接PB,已知AD=3,AB=4,设AP=m.(1)当m=1时,求PE的长;(2)连接BE,试问点P在运动的过程中,能否使得△PAB≌△PEB?请说明理由;(3)如图2,过点P作PF⊥PB交CD边于点F,设CF=n,试判断5m+4n的值是否发生变化,若不变,请求出它的值;若变化,请说明理由.10.(2023甘孜州中考模拟)如图①,AD为等腰直角△ABC的高,点A和点C分别在正方形DEFG的边DG和DE上,连接BG,AE.(1)求证:BG=AE;(2)将正方形DEFG绕点D旋转,当线段EG经过点A时,(如图②所示)①求证:BG⊥CE;②设DG与AB交于点M,若AG:AE=3:4,求的值.11.(2023·四川·九年级专题练习)探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究.在中,,D是边上一点,且(n为正整数),E是边上的动点,过点D作的垂线交直线于点F.【初步感知】(1)如图1,当时,兴趣小组探究得出结论:,请写出证明过程.【深入探究】(2)①如图2,当,且点F在线段上时,试探究线段之间的数量关系,请写出结论并证明;②请通过类比、归纳、猜想,探究出线段之间数量关系的一般结论(直接写出结论,不必证明)【拓展运用】(3)如图3,连接,设的中点为M.若,求点E从点A运动到点C的过程中,点M运动的路径长(用含n的代数式表示).12.(2023·宁夏银川·九年级校考阶段练习)将一副三角尺如图①摆放,在中,;在中,,点为的中点,交于点,经过点.(1)求的度数;(2)如图②,将绕点顺时针方向旋转角(),此时的等腰直角三角尺记为,交于点,交于点,试判断的值是否随着的变化而变化?如果不变,请求出的值;反之,请说明理由.13.(2023·广西南宁·校联考一模)在等边中,点D是边上一点,点E是直线上一动点,连接,将射线绕点D顺时针旋转,与直线相交于点F.(1)若点D为边中点.①如图1,当点E在边上,且时,请直接写出线段与的数量关系________;②如图2,当点E落在边上,点F落在边的延长线上时,①中的结论是否仍然成立?请结合图2说明理由;(2)如图3,点D为边上靠近点C的三等分点.当时,直接写出的值.14.(2023秋·山西忻州·九年级校考期末)综合与实践问题情境:在学习了三角形的相似后,同学们开始了对不同三角形中的相似模型的探究.猜想推理:
(1)如图1,在等边中,D为边上一点,E为边上一点,,,,则______.问题解决:(2)如图2,是等边三角形,D是的中点,射线,分别交,于点E,F,且,求证:.(3)如图3,,,,D是的中点,射线,分别交,于点E,F,且,求的值.15.(2023广东深圳三模试题)(1)【探
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工程项目管理课程设计任务书及实施方案
- 2018年高考生物(三月)中等生课外练(17)及解析
- 192家庭电路中电流过大的原因2
- 12徐州3年中考物理压轴题解析
- 工程外观质量评定表
- 2024-2025学年课时作业人教版地理课时作业82
- 人教部编八年级语文上册《一着惊海天》公开课教学课件
- 1.1 地球的宇宙环境 课件 高一上学期地理湘教版(2019)必修第一册
- 六年级下册-生命生态安全-教案备课讲稿
- 机场翻新垃圾清运服务
- GB∕T 2976-2020 金属材料 线材 缠绕试验方法
- 港口普通货物企业安全管理台账编制指南
- 网页设计与制作说课件
- 《因果推断实用计量方法》大学教学课件第7章匹配和回归方法比
- 《自然地理》教学课件 第六章 土壤圈
- 餐饮服务之托盘服务
- 工业设计史论述题
- 某煤矿巷道施工组织设计方案
- 幼儿园中班数学:《小蚂蚁过生日-7的点数》 PPT课件
- 材料成本差异对企业利润的影响
- 加油站安全风险隐患排查表
评论
0/150
提交评论