2024届济南市莱芜地区数学九上期末学业质量监测试题含解析_第1页
2024届济南市莱芜地区数学九上期末学业质量监测试题含解析_第2页
2024届济南市莱芜地区数学九上期末学业质量监测试题含解析_第3页
2024届济南市莱芜地区数学九上期末学业质量监测试题含解析_第4页
2024届济南市莱芜地区数学九上期末学业质量监测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届济南市莱芜地区数学九上期末学业质量监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,⊙O的圆周角∠A=40°,则∠OBC的度数为()A.80° B.50° C.40° D.30°2.在直角梯形ABCD中,AD//BC,∠B=90º,E为AB上一点,且ED平分∠ADC,EC平分∠BCD,则下列结论:①DE⊥EC;②点E是AB的中点;③AD∙BC=BE∙DE;④CD=AD+BC.其中正确的有()A.①②③ B.②③④ C.①②④ D.①③④3.小明同学以正六边形三个不相邻的顶点为圆心,边长为半径,向外作三段圆弧,设计了如图所示的图案,已知正六边形的边长为1,则该图案外围轮廓的周长为()A. B. C. D.4.下列方程中,没有实数根的是()A.x2﹣2x﹣3=0 B.(x﹣5)(x+2)=0C.x2﹣x+1=0 D.x2=15.若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60° B.90° C.120° D.180°6.下列函数中,图象不经过点(2,1)的是()A.y=﹣x2+5 B.y= C.y=x D.y=﹣2x+37.如图,中,.将绕点顺时针旋转得到,边与边交于点(不在上),则的度数为()A. B. C. D.8.如图中几何体的主视图是()A. B. C. D.9.如图,边长为的正方形的对角线与交于点,将正方形沿直线折叠,点落在对角线上的点处,折痕交于点,则()A. B. C. D.10.如图,在平面直角坐标系中,直线分别交轴,轴于两点,已知点的坐标为,若为线段的中点,连接,且,则的值是()A.12 B.6 C.8 D.411.若一个圆内接正多边形的内角是,则这个多边形是()A.正五边形 B.正六边形 C.正八边形 D.正十边形12.某单行道路的路口,只能直行或右转,任意一辆车通过路口时直行或右转的概率相同.有3辆车通过路口.恰好有2辆车直行的概率是()A. B. C. D.二、填空题(每题4分,共24分)13.抛物线经过点,则这条抛物线的对称轴是直线__________.14.若,那么△ABC的形状是___.15.分解因式:4x3﹣9x=_____.16.如图,正方形ABCD中,P为AD上一点,BP⊥PE交BC的延长线于点E,若AB=6,AP=4,则CE的长为_____.17.已知关于x的一元二次方程(a-1)x2-x+a2-1=0的一个根是0,那么a的值为.18.二次函数,当时,y随x的增大而减小,则m的取值范围是__________.三、解答题(共78分)19.(8分)《庄子·天下》:“一尺之棰,日取其半,万世不竭.”意思是说:一尺长的木棍,每天截掉一半,永远也截不完.我国智慧的古代人在两千多年前就有了数学极限思想,今天我们运用此数学思想研究下列问题.(规律探索)(1)如图1所示的是边长为1的正方形,将它剪掉一半,则S阴影1=1-=如图2,在图1的基础上,将阴影部分再裁剪掉—半,则S阴影2=1--()2=____;同种操作,如图3,S阴影3=1--()2-()3=__________;如图4,S阴影4=1--()2-()3-()4=___________;……若同种地操作n次,则S阴影n=1--()2-()3-…-()n=_________.于是归纳得到:+()2+()3+…+()n=_________.(理论推导)(2)阅读材料:求1+2+22+23+24+…+22015+22016的值.解:设S=1+2+22+23+24+…+22015+22016,①将①×2得:2S=2+22+23+24+…+22016+22017,②由②-①得:2S—S=22017—1,即=22017-1.即1+2+22+23+24+…+22015+22016=22017-1根据上述材料,试求出+()2+()3+…+()n的表达式,写出推导过程.(规律应用)(3)比较+++……__________1(填“”、“”或“=”)20.(8分)如图,已知三个顶点的坐标分别为,,(1)请在网格中,画出线段关于原点对称的线段;(2)请在网格中,过点画一条直线,将分成面积相等的两部分,与线段相交于点,写出点的坐标;(3)若另有一点,连接,则.21.(8分)超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到县城城南大道的距离为米的点处.这时,一辆出租车由西向东匀速行驶,测得此车从处行驶到处所用的时间为秒,且,.求、之间的路程;请判断此出租车是否超过了城南大道每小时千米的限制速度?22.(10分)如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC,过点D作DE⊥AC,垂足为E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线;(3)若⊙O的半径为5,sinB=,求DE的长.23.(10分)如图,在平面直角坐标系中,有一个,顶点的坐标分别是.将绕原点顺时针旋转90°得到,请在平面直角坐标系中作出,并写出的顶点坐标.24.(10分)如图,在中,,于点,于点.(1)求证:;(2)若,求四边形的面积.25.(12分)如图,为了测量山脚到塔顶的高度(即的长),某同学在山脚处用测角仪测得塔顶的仰角为,再沿坡度为的小山坡前进400米到达点,在处测得塔顶的仰角为.(1)求坡面的铅垂高度(即的长);(2)求的长.(结果保留根号,测角仪的高度忽略不计).26.如图,有一个三等分数字转盘,小红先转动转盘,指针指向的数字记下为,小芳后转动转盘,指针指向的数字记下为,从而确定了点的坐标,(若指针指向分界线,则重新转动转盘,直到指针指向数字为止)(1)小红转动转盘,求指针指向的数字2的概率;(2)请用列举法表示出由,确定的点所有可能的结果.(3)求点在函数图象上的概率.

参考答案一、选择题(每题4分,共48分)1、B【分析】然后根据圆周角定理即可得到∠OBC的度数,由OB=OC,得到∠OBC=∠OCB,根据三角形内角和定理计算出∠OBC.【详解】∵∠A=40°.

∴∠BOC=80°,

∵OB=OC,

∴∠OBC=∠OCB=50°,

故选:B.【点睛】本题考查了圆周角定理:一条弧所对的圆周角是它所对的圆心角的一半;也考查了等腰三角形的性质以及三角形的内角和定理.2、C【解析】如图(见解析),过点E作,根据平行线的性质、角平分线的性质、相似三角形的判定定理与性质逐个判断即可.【详解】如图,过点E作,即ED平分,EC平分,即,故①正确又ED平分,EC平分,点E是AB的中点,故②正确在和中,同理可证:,故④正确又,即在中,,故③错误综上,正确的有①②④故选:C.【点睛】本题考查了平行线的性质、角平分线的性质、相似三角形的判定定理与性质,通过作辅助线,构造垂线和两组全等的三角形是解题关键.3、C【分析】根据正六边形的边长相等,每个内角为120度,可知图案外围轮廓的周长为三个半径为1、圆心角为240度的弧长之和.【详解】由题意可知:

∵正六边形的内角,∴扇形的圆心角,

∵正六边形的边长为1,

∴该图案外围轮廓的周长,

故选:C.【点睛】本题考查了弧长的计算公式,正多边形和圆,正六边形的性质,正确的识别图形是解题的关键.4、C【分析】分别计算出各选项中方程的判别式或方程的根,从而做出判断.【详解】解:A.方程x2﹣2x﹣3=0中△=(﹣2)2﹣4×1×(﹣3)=16>0,有两个不相等的实数根,不符合题意;B.方程(x﹣5)(x+2)=0的两根分别为x1=5,x2=﹣2,不符合题意;C.方程x2﹣x+1=0中△=(﹣1)2﹣4×1×1=﹣3<0,没有实数根,符合题意;D.方程x2=1的两根分别为x1=1,x2=﹣1,不符合题意;故选:C.【点睛】本题考查了根的判别式,牢记“当△<0时,方程无实数根”是解题的关键.5、C【详解】解:设母线长为R,底面半径为r,可得底面周长=2πr,底面面积=πr2,侧面面积=lr=πrR,根据圆锥侧面积恰好等于底面积的3倍可得3πr2=πrR,即R=3r.根据圆锥的侧面展开图的弧长等于圆锥的底面周长,设圆心角为n,有,即.可得圆锥侧面展开图所对应的扇形圆心角度数n=120°.故选C.考点:有关扇形和圆锥的相关计算6、D【分析】根据题意分别计算出当时的各选项中的函数值,然后进一步加以判断即可.【详解】A:当x=2时,y=−4+5=1,则点(2,1)在抛物线y=−x2+5上,所以A选项错误;B:当x=2时,y==1,则点(2,1)在双曲线y=上,所以B选项错误;C:当x=2时,y=×2=1,则点(2,1)在直线y=x上,所以C选项错误;D:当x=2时,y=−4+3=−1,则点(2,1)不在直线y=−2x+3上,所以D选项正确.故选:D.【点睛】本题主要考查了函数图像上点的坐标的性质,熟练掌握相关概念是解题关键.7、D【分析】根据旋转的性质可得∠B′=∠B=30°,∠BOB′=52°,再由三角形外角的性质即可求得的度数.【详解】∵△A′OB′是由△AOB绕点O顺时针旋转得到,∠B=30°,∴∠B′=∠B=30°,∵△AOB绕点O顺时针旋转52°,∴∠BOB′=52°,∵∠A′CO是△B′OC的外角,∴∠A′CO=∠B′+∠BOB′=30°+52°=82°.故选D.【点睛】本题主要考查了旋转的性质,熟知旋转的性质是解决问题的关键.8、D【解析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】解:从正面看应得到第一层有3个正方形,第二层从左面数第1个正方形上面有1个正方形,故选D.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.9、D【分析】过点M作MP⊥CD垂足为P,过点O作OQ⊥CD垂足为Q,根据正方形的性质得到AB=AD=BC=CD=,∠DCB=∠COD=∠BOC=90°,根据折叠的性质得到∠EDF=∠CDF,设OM=PM=x,根据相似三角形的性质即可得到结论.【详解】过点M作MP⊥CD垂足为P,过点O作OQ⊥CD垂足为Q,∵正方形的边长为,∴OD=1,OC=1,OQ=DQ=,由折叠可知,∠EDF=∠CDF.又∵AC⊥BD,∴OM=PM,设OM=PM=x∵OQ⊥CD,MP⊥CD∴∠OQC=∠MPC=900,∠PCM=∠QCO,∴△CMP∽△COQ∴,即,解得x=-1∴OM=PM=-1.故选D【点睛】此题考查正方形的性质,折叠的性质,相似三角形的性质与判定,角平分线的性质,解题关键在于作辅助线10、A【分析】根据“一线三等角”,通过构造相似三角形,对m的取值进行分析讨论即可求出m的值.【详解】由已知得,∴.如图,在轴负半轴上截取,可得是等腰直角三角形,∴.又∵,∴,∴,∴,即,解得(舍去)或,的值是12.【点睛】本题考查了相似三角形的判定与性质的知识点,解题时还需注意分类讨论的数学思想的应用11、A【分析】根据正多边形的内角求得每个外角的度数,利用多边形外角和为360°即可求解.【详解】解:∵圆内接正多边形的内角是,∴该正多边形每个外角的度数为,∴该正多边形的边数为:,故选:A.【点睛】本题考查圆与正多边形,掌握多边形外角和为360°是解题的关键.12、B【分析】用表示直行、表示右转,画出树状图表示出所有的种等可能的结果,其中恰好有辆车直行占种,然后根据概率公式求解即可.【详解】解:若用表示直行、表示右转,则画树状图如下:∵共有种等可能的结果,其中恰好有辆车直行占种∴(恰好辆车直行).故选:B【点睛】此题考查的是用树状图法求概率.注意树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;注意概率等于所求情况数与总情况数之比.二、填空题(每题4分,共24分)13、【分析】根据抛物线的轴对称性,即可得到答案.【详解】∵抛物线经过点,且点,点关于直线x=1对称,∴这条抛物线的对称轴是:直线x=1.故答案是:.【点睛】本题主要考查二次函数的图象与性质,掌握抛物线的轴对称性,是解题的关键.14、等边三角形【分析】由非负性和特殊角的三角函数值,求出∠A和∠B的度数,然后进行判断,即可得到答案.【详解】解:,∴,,∴∠A=60°,∠B=60°,∴∠C=60°,∴△ABC是等边三角形;故答案为:等边三角形.【点睛】本题考查了特殊角的三角函数值,非负性的应用,解题的关键是熟练掌握非负数的性质,正确得到∠A和∠B的度数.15、x(2x+3)(2x﹣3)【分析】先提取公因式x,再利用平方差公式分解因式即可.【详解】原式=x(4x2﹣9)=x(2x+3)(2x﹣3),故答案为:x(2x+3)(2x﹣3)【点睛】本题考查了提公因式法与公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.16、2【分析】利用同角的余角相等可得出∠ABP=∠DPF,结合∠A=∠D可得出△APB∽△DFP,利用相似三角形的性质可求出DF的长,进而可得出CF的长,由∠PFD=∠EFC,∠D=∠ECF可得出△PFD∽△EFC,再利用相似三角形的性质可求出CE的长.【详解】∵四边形ABCD为正方形,∴∠A=∠D=∠ECF=90°,AB=AD=CD=6,∴DP=AD﹣AP=1.∵BP⊥PE,∴∠BPE=90°,∴∠APB+∠DPF=90°.∵∠APB+∠ABP=90°,∴∠ABP=∠DPF.又∵∠A=∠D,∴△APB∽△DFP,∴,即,∴DF=,∴CF=.∵∠PFD=∠EFC,∠D=∠ECF,∴△PFD∽△EFC,∴=,即,∴CE=2.故答案为:2.【点睛】此题考查相似三角形判定与性质以及正方形的性质,利用相似三角形的判定定理,找出△APB∽△DFP及△PFD∽△EFC是解题的关键.17、-1【解析】试题分析:把代入方程,即可得到关于a的方程,再结合二次项系数不能为0,即可得到结果.由题意得,解得,则考点:本题考查的是一元二次方程的根即方程的解的定义点评:解答本题的关键是熟练掌握一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.同时注意一元二次方程的二次项系数不能为0.18、【分析】先根据二次函数的解析式判断出函数的开口方向,再由当时,函数值y随x的增大而减小可知二次函数的对称轴,故可得出关于m的不等式,求出m的取值范围即可.【详解】解:∵二次函数,a=−1<0,∴抛物线开口向下,∵当时,函数值y随x的增大而减小,∴二次函数的对称轴,即,解得,故答案为:.【点睛】本题考查的是二次函数的性质,熟知二次函数的增减性是解答此题的关键.三、解答题(共78分)19、(1);;;()n;1-()n;(2)+()2+()3+…+()n=1-()n,推导过程见解析;(3)=【分析】(1)根据有理数的混合运算计算前几项结果,并观察得出规律即可得解

(2)根据材料中的计算求和的方法即可求解;

(3)根据(2)的化简结果,结合极限思想即可比较大小.【详解】解:(1)S阴影2=1--()2=1-==,S阴影3=1--()2-()3=1-==,S阴影4=1--()2-()3-()4==,⋯S阴影n=1--()2-()3-…-()n=()n,于是归纳得到:+()2+()3+…+()n=1-()n故答案为:;;;()n;1-()n(2)解:设S=+()2+()3+…+()n,①将①×得:S=()2+()3+)4…+()n+()n+1,②①-②得:S=-()n+1,③将③×2得:S=1-()n即得+()2+()3+…+()n=1-()n(3)=,理由如下:∵+++……=1-()n,当n越来越大时,()n越来越小,越来越接近零,由极限的思想可知:当n趋于无穷时,()n就等于0,故1-()n就等于1,故答案为:=【点睛】本题考查了数字的变化类、有理数的混合运算,解决的本题的关键是寻找规律并利用规律.20、(1)见解析;(2)见解析,;(3)1.【分析】(1)分别作出点B、C关于原点对称的点,然后连接即可;(2)根据网格特点,找到AB的中点D,作直线CD,根据点D的位置写出坐标即可;(3)连接BP,证明△BPC是等腰直角三角形,继而根据正切的定义进行求解即可.【详解】(1)如图所示,线段B1C1即为所求作的;(2)如图所示,D(-1,-4);(3)连接BP,则有BP2=32+12=10,BC2=32+12=10,BC2=42+22=20,BP2+BC2=PC2,∴△BPC是等腰直角三角形,∠PBC=90°,∴∠BCP=45°,∴tan∠BCP=1,故答案为1.【点睛】本题考查了作图——中心对称,三角形中线的性质,勾股定理的逆定理,正切,熟练掌握相关知识并能灵活运用网格的结构特征是解题的关键.21、(米);此车超过了每小时千米的限制速度.【分析】(1)利用三角函数在两个直角三角形中分别计算出BO、AO的长,即可算出AB的长;(2)利用路程÷时间=速度,计算出出租车的速度,再把60千米/时化为米/秒,再进行比较即可.【详解】由题意知:米,,,在直角三角形中,∵,∴米,在直角三角形中,∵,∴米,∴(米);∵从处行驶到处所用的时间为秒,∴速度为米/秒,∵千米/时米/秒,而,∴此车超过了每小时千米的限制速度.【点睛】此题是解直角三角形的应用,主要考查了锐角三角函数,从复杂的实际问题中整理出直角三角形并求解是解决此类题目的关键.22、(1)见解析;(2)见解析;(3).【解析】(1)连接AD,根据圆周角定理得到AD⊥BC,根据线段垂直平分线的性质证明;(2)连接OD,根据三角形中位线定理得到OD∥AC,得到DE⊥OD,证明结论;(3)解直角三角形求得AD,进而根据勾股定理求得BD、CD,据正弦的定义计算即可求得.【详解】(1)证明:如图,连接AD,∵AB是⊙O的直径,∴AD⊥BC,又DC=BD,∴AB=AC;(2)证明:如图,连接OD,∵AO=BO,CD=DB,∴OD是△ABC的中位线,∴OD∥AC,又DE⊥AC,∴DE⊥OD,∴DE为⊙O的切线;(3)解:∵AB=AC,∴∠B=∠C,∵⊙O的半径为5,∴AB=AC=10,∵sinB==,∴AD=8,∴CD=BD==6,∴sinB=sinC==,∴DE=.【点睛】本题考查的是圆周角定理、切线的判定定理以及三角形中位线定理,掌握相关的性质定理和判定定理是解题的关键.23、作图见解析,【分析】连接OA、OB、OC,以O为圆心,分别以OA、OB、OC为半径,顺时针旋转90°,分别得到OA1、OB1、OC1,连接A1B1、A1C1、B1C1即可;然后过点A作AD⊥x轴于D,过点A1作A1E⊥x轴于E,利用AAS证出△OAD≌△A1OE,然后根据全等三角形的性质即可求出点A1的坐标,同理即可求出点B1、C1的坐标.【详解】解:连接OA、OB、OC,以O为圆心,分别以OA、OB、OC为半径,顺时针旋转90°,分别得到OA1、OB1、OC1,连接A1B1、A1C1、B1C1,如下图所示,即为所求;过点A作AD⊥x轴于D,过点A1作A1E⊥x轴于E∵根据旋转的性质可得:OA=A1O,∠AOA1=90°∴∠AOD+∠OAD=90°,∠AOD+∠A1OE=90°∴∠OAD=∠A1OE在△OAD和△A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论