2024届河南省驻马店确山县联考九年级数学第一学期期末联考模拟试题含解析_第1页
2024届河南省驻马店确山县联考九年级数学第一学期期末联考模拟试题含解析_第2页
2024届河南省驻马店确山县联考九年级数学第一学期期末联考模拟试题含解析_第3页
2024届河南省驻马店确山县联考九年级数学第一学期期末联考模拟试题含解析_第4页
2024届河南省驻马店确山县联考九年级数学第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河南省驻马店确山县联考九年级数学第一学期期末联考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.在Rt△ABC中,∠C=90°,AC=3,BC=4,那么cosA的值是()A. B. C. D.2.掷一枚质地均匀的硬币10次,下列说法正确的是()A.必有5次正面朝上 B.可能有5次正面朝上C.掷2次必有1次正面朝上 D.不可能10次正面朝上3.设a,b是方程的两个实数根,则的值为A.2014 B.2015 C.2016 D.20174.关于抛物线,下列说法错误的是A.开口向上 B.对称轴是y轴C.函数有最大值 D.当x>0时,函数y随x的增大而增大5.如图,已知⊙O的直径AB⊥弦CD于点E,下列结论中一定正确的是()A.AE=OE B.CE=DE C.OE=CE D.∠AOC=60°6.把抛物线y=-x2向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线解析式为()A.y=-(x+1)2+1 B.y=-(x+1)2-1 C.y=-(x-1)2+1 D.y=-(x-1)2-17.已知是关于的一元二次方程的两个根,且满足,则的值为()A.2 B. C.1 D.8.若△ABC∽△ADE,若AB=6,AC=4,AD=3,则AE的长是()A.1 B.2 C.1.5 D.39.已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为()A. B.2π C.3π D.12π10.如图,某中学计划靠墙围建一个面积为的矩形花圃(墙长为),围栏总长度为,则与墙垂直的边为()A.或 B. C. D.11.若一元二次方程kx2﹣3x﹣=0有实数根,则实数k的取值范围是()A.k=﹣1 B.k≥﹣1且k≠0 C.k>﹣1且k≠0 D.k≤﹣1且k≠012.如图,当刻度尺的一边与⊙O相切时,另一边与⊙O的两个交点处的读数如图所示(单位:cm),圆的半径是5,那么刻度尺的宽度为()A.cm B.4cm C.3cm D.2cm二、填空题(每题4分,共24分)13.已知⊙O的半径为,圆心O到直线L的距离为,则直线L与⊙O的位置关系是___________.14.若正六边形的内切圆半径为2,则其外接圆半径为__________.15.如图,AC是矩形ABCD的对角线,⊙O是△ABC的内切圆,现将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG,点F,G分别在AD,BC上,连结OG,DG,若OG⊥DG,且⊙O的半径长为1,则BC+AB的值______.16.点关于原点的对称点的坐标为__________.17.钟表的轴心到分钟针端的长为那么经过分钟,分针针端转过的弧长是_________________.18.中,如果锐角满足,则_________度三、解答题(共78分)19.(8分)在一个不透明的盒子中装有大小和形状相同的3个红球和2个白球,把它们充分搅匀.(1)“从中任意抽取1个球不是红球就是白球”是事件,“从中任意抽取1个球是黑球”是事件;(2)从中任意抽取1个球恰好是红球的概率是;(3)学校决定在甲、乙两名同学中选取一名作为学生代表发言,制定如下规则:从盒子中任取两个球,若两球同色,则选甲;若两球异色,则选乙.你认为这个规则公平吗?请用列表法或画树状图法加以说明.20.(8分)已知的半径为,点到直线的距离为,且直线与相切,若,分别是方程的两个根,求的值.21.(8分)某运动品牌对第一季度A、B两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图所示:(1)一月份B款运动鞋的销售量是A款的80%,则一月份B款运动鞋销售了多少双?(2)第一季度这两款运动鞋的销售单价保持不变,求三月份的总销售额(销售额=销售单价×销售量)(3)结合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.22.(10分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球1个,若从中随机摸出一个球,这个球是白球的概率为(1)求袋子中白球的个数(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,请用画树状图或列表的方法,求两次都摸到白球的概率.23.(10分)(1)如图1,在△ABC中,AB>AC,点D,E分别在边AB,AC上,且DE∥BC,若AD=2,AE=,则的值是;(2)如图2,在(1)的条件下,将△ADE绕点A逆时针方向旋转一定的角度,连接CE和BD,的值变化吗?若变化,请说明理由;若不变化,请求出不变的值;(3)如图3,在四边形ABCD中,AC⊥BC于点C,∠BAC=∠ADC=θ,且tanθ=,当CD=6,AD=3时,请直接写出线段BD的长度.24.(10分)关于的一元二次方程有实数根.(1)求的取值范围;(2)如果是符合条件的最大整数,且一元二次方程与方程有一个相同的根,求此时的值.25.(12分)某水果超市第一次花费2200元购进甲、乙两种水果共350千克.已知甲种水果进价每千克5元,售价每千克10元;乙种水果进价每千克8元,售价每千克12元.(1)第一次购进的甲、乙两种水果各多少千克?(2)由于第一次购进的水果很快销售完毕,超市决定再次购进甲、乙两种水果,它们的进价不变.若要本次购进的水果销售完毕后获得利润2090元,甲种水果进货量在第一次进货量的基础上增加了2m%,售价比第一次提高了m%;乙种水果的进货量为100千克,售价不变.求m的值.26.如图,抛物线y=x2+bx+c与x轴交于A(-1,0),(1)求该抛物线的解析式;(2)抛物线的对称轴上是否存在一点M,使ΔACM的周长最小?若存在,请求出点M的坐标,若不存在,请说明理由.(3)设抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足SΔPAB=8,并求出此时点

参考答案一、选择题(每题4分,共48分)1、B【解析】根据勾股定理,可得AB的长,根据锐角的余弦等于邻边比斜边,可得答案.【详解】解:在Rt△ABC中,∠C=90°,AC=3,BC=4,

由勾股定理,得AB==5cosA==故选:B.【点睛】本题考查锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.2、B【分析】根据随机事件是指在一定条件下,可能发生也可能不发生的事件,可得答案.【详解】解:掷一枚质地均匀的硬币10次,不一定有5次正面朝上,选项A不正确;可能有5次正面朝上,选项B正确;掷2次不一定有1次正面朝上,可能两次都反面朝上,选项C不正确.可能10次正面朝上,选项D不正确.故选:B.【点睛】本题考查的是随机事件,掌握随机事件的概念是解题的关键,随机事件是指在一定条件下,可能发生也可能不发生的事件.3、C【详解】解:∵a,b是方程x2+x﹣2017=0的两个实数根,∴a+b=﹣1,a2+a﹣2017=0,∴a2=﹣a+2017,∴a2+2a+b=﹣a+2017+2a+b=2017+a+b=2017﹣1=1.故选C.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,则,.也考查了一元二次方程的解.4、C【分析】由抛物线解析式可求得其开口方向、顶点坐标、最值及增减性,则可判断四个选项,可求得答案.【详解】A.因为a=2>0,所以开口向上,正确;B.对称轴是y轴,正确;C.当x=0时,函数有最小值0,错误;D.当x>0时,y随x增大而增大,正确;故选:C【点睛】考查二次函数的图象与性质,掌握二次函数的图象与系数的关系是解题的关键.5、B【分析】根据垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧求解.【详解】解:∵直径AB⊥弦CD∴CE=DE故选B.【点睛】本题考查垂径定理,本题属于基础应用题,只需学生熟练掌握垂径定理,即可完成.6、B【解析】试题分析:根据抛物线的平移规律“左加右减,上加下减”,可直接求得平移后的抛物线的解析式为:.7、B【分析】根据根与系数的关系,即韦达定理可得,易求,从而可得,解可求,再利用根的判别式求出符合题意的.【详解】由题意可得,a=1,b=k,c=-1,∵满足,∴①根据韦达定理②把②式代入①式,可得:k=-2故选B.【点睛】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合进行解题.8、B【分析】根据相似三角形的性质,由,即可得到AE的长.【详解】解:∵△ABC∽△ADE,∴,∵AB=6,AC=4,AD=3,∴,∴;故选择:B.【点睛】本题考查了相似三角形的性质,解题的关键是熟练掌握相似三角形的性质.9、C【解析】试题分析:根据弧长公式:l==3π,故选C.考点:弧长的计算.10、C【分析】设与墙相对的边长为(28-2x)m,根据题意列出方程x(28-2x)=80,求解即可.【详解】设与墙相对的边长为(28-2x)m,则0<28-2x≤12,解得8≤x<14,根据题意列出方程x(28-2x)=80,解得x1=4,x2=10因为8≤x<14∴与墙垂直的边为10m故答案为C.【点睛】本题考查一元二次方程的应用,根据题意列出方程并求解是解题的关键,注意题中限制条件,选取适合的x值.11、B【分析】根据一元二次方程根的判别式△=9+9k≥0即可求出答案.【详解】解:由题意可知:△=9+9k≥0,∴k≥﹣1,∵k≠0,∴k≥﹣1且k≠0,故选:B.【点睛】本题考查了根据一元二次方程根的情况求方程中的参数,解题的关键是熟知一元二次方程根的判别式的应用.12、D【解析】连接OA,过点O作OD⊥AB于点D,∵OD⊥AB,∴AD=12AB=12(9−1)=4cm,∵OA=5,则OD=5−DE,在Rt△OAD中,,即解得DE=2cm.故选D.二、填空题(每题4分,共24分)13、相交【分析】先根据题意判断出直线与圆的位置关系即可得出结论.【详解】∵⊙O的半径为6cm,圆心O到直线l的距离为5cm,6cm>5cm,∴直线l与⊙O相交,故答案为:相交.【点睛】本题考查的是直线与圆的位置关系,熟知设⊙O的半径为r,圆心O到直线l的距离为d,当d<r时,直线与圆相交是解答此题的关键.14、【分析】根据题意画出草图,可得OG=2,,因此利用三角函数便可计算的外接圆半径OA.【详解】解:如图,连接、,作于;则,∵六边形正六边形,∴是等边三角形,∴,∴,∴正六边形的内切圆半径为2,则其外接圆半径为.故答案为.【点睛】本题主要考查多边形的内接圆和外接圆,关键在于根据题意画出草图,再根据三角函数求解,这是多边形问题的解题思路.15、4+【分析】如图所示:设圆O与BC的切点为M,连接OM.由切线的性质可知OM⊥BC,然后证明△OMG≌△GCD,得到OM=GC=3,CD=GM=BC﹣BM﹣GC=BC﹣3.设AB=a,BC=a+3,AC=3a,从而可求得∠ACB=20°,从而得到,故此可求得AB=,则BC=+2.求得AB+BC=4+.【详解】解:解:如图所示:设圆0与BC的切点为M,连接OM.

∵BC是圆O的切线,M为切点,

∴OM⊥BC.

∴∠OMG=∠GCD=90°.

由翻折的性质可知:OG=DG.

∵OG⊥GD,

∴∠OGM+∠DGC=90°.

又∵∠MOG+∠OGM=90°,

∴∠MOG=∠DGC.

在△OMG和△GCD中,,∴△OMG≌△GCD.

∴OM=GC=3.

CD=GM=BC-BM-GC=BC-3.

∵AB=CD,

∴BC-AB=3.

设AB=a,则BC=a+3.

∵圆O是△ABC的内切圆,

∴AC=AB+BC-3r.

∴AC=3a.∴.∴∠ACB=20°.∴,∴.故答案为:.考点:3、三角形的内切圆与内心;3、矩形的性质;2、翻折变换(折叠问题)16、【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数求解即可.【详解】解:点关于原点对称点是,则点的坐标为:故答案为:【点睛】本题考查的关于原点对称的点的坐标的问题.17、【分析】钟表的分针经过40分钟转过的角度是,即圆心角是,半径是,弧长公式是,代入就可以求出弧长.【详解】解:圆心角的度数是:,弧长是.【点睛】本题考查了求弧长,正确记忆弧长公式,掌握钟面角是解题的关键.18、【分析】根据绝对值与偶数次幂的非负性,可得且,进而求出∠A,∠B的值,即可得到答案.【详解】∵,∴且,∴且,∴∠A=45°,∠B=30°,∵在中,,∴105°.故答案是:105°.【点睛】本题主要考查绝对值与偶数次幂的非负性,特殊三角函数以及三角形内角和定理,掌握绝对值与偶数次幂的非负性,是解题的关键.三、解答题(共78分)19、(1)必然,不可能;(2);(3)此游戏不公平.【解析】(1)直接利用必然事件以及怒不可能事件的定义分别分析得出答案;(2)直接利用概率公式求出答案;(3)首先画出树状图,进而利用概率公式求出答案.【详解】(1)“从中任意抽取1个球不是红球就是白球”是必然事件,“从中任意抽取1个球是黑球”是不可能事件;故答案为必然,不可能;(2)从中任意抽取1个球恰好是红球的概率是:;故答案为;(3)如图所示:,由树状图可得:一共有20种可能,两球同色的有8种情况,故选择甲的概率为:;则选择乙的概率为:,故此游戏不公平.【点睛】此题主要考查了游戏公平性,正确列出树状图是解题关键.20、【分析】根据直线与圆相切的条件得,再根据一元二次方程根的判别式列出方程即得.【详解】∵由题意可知.∴方程的两根相等∴解得:.【点睛】本题考查了直线与圆相切的条件及一元二次方程根的判别式,解题关键是熟知直线与圆相切的条件是圆心到直线的距离等于圆的半径,判别式时,一元二次方程有两个相等实数根.21、(1)40;(2)39000;(3)答案不唯一,详见解析【分析】(1)用一月份A款的数量乘以,即可得出一月份B款运动鞋销售量;(2)设A,B两款运动鞋的销量单价分别为x元,y元,根据图形中给出的数据,列出算式,再进行计算即可;(3)根据条形统计图和折线统计图所给出的数据,提出合理的建议即可.【详解】解:(1),一月份款运动鞋销售了40双.(2)设两款运动鞋的销售单价分别为元,则根据题意,得,解得三月份的总销售额为(元).(3)答案不唯一,如:从销售量来看,款运动鞋销售量逐月上升,比款运动鞋销售量大,建议多进款运动鞋,少进或不进款运动鞋.从总销售额来看,由于款运动鞋销售量逐月减少,导致总销售额减少,建议采取一些促销手段,增加款运动鞋的销售量.(写出一条即可)【点睛】本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22、(1)袋子中白球有2个;(2)(两次都摸到白球)【分析】(1)设袋子中白球有个,根据摸出白球的概率=白球的个数÷红、白球的总数,列出方程即可求出白球的个数;(2)根据题意,列出表格,然后根据表格和概率公式求概率即可.【详解】解:(1)设袋子中白球有个,则,解得,经检验是该方程的解,答:袋子中白球有2个.(2)列表如下:红白1白2红(红,红)(红,白1)(红,白2)白1(白1,红)(白1,白1)(白1,白2)白2(白2,红)(白2,白1)(白2,白2)由上表可知,总共有9种等可能结果,其中两次都摸到白球的有4种,所以(两次都摸到白球)【点睛】此题考查的是根据概率求白球的数量和求概率问题,掌握列表法和概率公式是解决此题的关键.23、(1);(2)的值不变化,值为,理由见解析;(3)【分析】(1)由平行线分线段成比例定理即可得出答案;(2)证明△ABD∽△ACE,得出==(3)作AE⊥CD于E,DM⊥AC于M,DN⊥BC于N,则DM=CN,DN=MC,由三角函数定义得出=,=,得出=,求出AE=AD=,DE=AE=,得出CE=CD﹣DE=,由勾股定理得出AC==,得出BC=AC=,由面积法求出CN=DM=,得出BN=BC+CN=,由勾股定理得出AM==,得出DN=MC=AM+AC=,再由勾股定理即可得出答案.【详解】(1)∵DE∥BC,∴===;故答案为:;(2)的值不变化,值为;理由如下:由(1)得:DE∥B,∴△ADE∽△ABC,∴=,由旋转的性质得:∠BAD=∠CAE,∴△ABD∽△ACE,∴==;(3)作AE⊥CD于E,DM⊥AC于M,DN⊥BC于N,如图3所示:则四边形DMCN是矩形,∴DM=CN,DN=MC,∵∠BAC=∠ADC=θ,且tanθ=,∴=,=,∴=,∴AE=AD=×3=,DE=AE=,∴CE=CD﹣DE=6﹣=,∴AC===∴BC=AC=,∵△ACD的面积=AC×DM=CD×AE,∴CN=DM==,∴BN=BC+CN=,AM===,∴DN=MC=AM+AC=,∴BD===.【点睛】本题是四边形综合题目,考查了相似三角形的判定与性质、旋转的性质、平行线分线段成比例定理、矩形的判定与性质、勾股定理、三角函数定义、三角形面积等知识;熟练掌握相似三角形的判定与性质和勾股定理是解题的关键.24、(1);(2)的值为.【分析】(1)利用判别式的意义得到,然后解不等式即可;(2)利用(1)中的结论得到的最大整数为2,解方程解得,把和分别代入一元二次方程求出对应的,同时满足.【详解】解:(1)根据题意得,解得;(2)的最大整数为2,方程变形为,解得,∵一元二次方程与方程有一个相同的根,∴当时,,解得;当时,,解得,而,∴的值为.【点睛】本题考查了根的判别式:一元二次方程的根与有如下关系:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程无实数根.25、(1)第一次购进甲种水果200千克,购进乙种水果10千克;(2)m的值为1.【分析】(1)设第一次购进甲种水果x千克,购进乙种水果y千克,根据该超市花费2200元购进甲、乙两种水果共350千克,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总利润=每千克的利润×销售数量,即可得出关于m的一元二次方程,解之取其正值即可得出结论.【详解】(1)设第一次购进甲种水果x千克,购进乙种水果y千克,依题意,得:,解得:.答:第一次购进甲种水果200千克,购进乙种水果10千克.(2)依题意,得:[10(1+m%)﹣5]×200(1+2m%)+(12﹣8)×100=2090,整理,得:0.4m2+40m﹣690=0,解得:m1=1,m2=﹣11(不合题意,舍去).答:m的值为1.【点睛】考核知识点:一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论