2024届广西北流、陆川、容县数学九上期末检测模拟试题含解析_第1页
2024届广西北流、陆川、容县数学九上期末检测模拟试题含解析_第2页
2024届广西北流、陆川、容县数学九上期末检测模拟试题含解析_第3页
2024届广西北流、陆川、容县数学九上期末检测模拟试题含解析_第4页
2024届广西北流、陆川、容县数学九上期末检测模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广西北流、陆川、容县数学九上期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.计算的值是()A. B. C. D.2.如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,使点P′在△ABC内,已知∠AP′B=135°,若连接P′C,P′A:P′C=1:4,则P′A:P′B=()A.1:4 B.1:5 C.2: D.1:3.矩形不具备的性质是()A.是轴对称图形 B.是中心对称图形 C.对角线相等 D.对角线互相垂直4.如图,△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP=3cm,那么PP′的长为()A. B. C. D.5.使关于的二次函数在轴左侧随的增大而增大,且使得关于的分式方程有整数解的整数的和为()A.10 B.4 C.0 D.36.掷一枚质地均匀的硬币10次,下列说法正确的是()A.每2次必有一次正面朝上 B.必有5次正面朝上C.可能有7次正面朝上 D.不可能有10次正面朝上7.将化成的形式为()A. B.C. D.8.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,AE=1,则弦CD的长是()A. B.2 C.6 D.89.如图,在平面直角坐标系中,A(1,2),B(1,-1),C(2,2),抛物线y=ax2(a≠0)经过△ABC区域(包括边界),则a的取值范围是()A.

B.

C.

或D.10.如图,在正方形纸片ABCD中,E,F分别是AD,BC的中点,沿过点B的直线折叠,使点C落在EF上,落点为N,折痕交CD边于点M,BM与EF交于点P,再展开.则下列结论中:①CM=DM;②∠ABN=30°;③AB2=3CM2;④△PMN是等边三角形.正确的有()A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共24分)11.西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表.如图是一个根据北京的地理位置设计的圭表,其中,立柱高为.已知,冬至时北京的正午日光入射角约为,则立柱根部与圭表的冬至线的距离(即的长)为______.12.已知二次函数(为常数),当取不同的值时,其图象构成一个“抛物线系”.如图分别是当取四个不同数值时此二次函数的图象.发现它们的顶点在同一条直线上,那么这条直线的表达式是_________.13.写出一个你认为的必然事件_________.14.在中,,则∠C的度数为____.15.如图,点A(m,2),B(5,n)在函数(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为.16.如图,中,边上的高长为.作的中位线,交于点;作的中位线,交于点;……顺次这样做下去,得到点,则________.

17.在平面直角坐标系中,抛物线y=x2的图象如图所示.已知A点坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4……,依次进行下去,则点A2019的坐标为_______.18.已知二次函数的图像开口向上,则的值为________.三、解答题(共66分)19.(10分)如图,四边形ABCD是⊙O的内接四边形,,AC为直径,DE⊥BC,垂足为E.(1)求证:CD平分∠ACE;(2)若AC=9,CE=3,求CD的长.20.(6分)如图,已知抛物线(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C,且OC=OB.(1)求此抛物线的解析式;(2)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求出此时点E的坐标;(3)点P在抛物线的对称轴上,若线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,求点P的坐标.21.(6分)已知:矩形中,,,点,分别在边,上,直线交矩形对角线于点,将沿直线翻折,点落在点处,且点在射线上.(1)如图1所示,当时,求的长;(2)如图2所示,当时,求的长;(3)请写出线段的长的取值范围,及当的长最大时的长.22.(8分)已知,点P是等边三角形△ABC中一点,线段AP绕点A逆时针旋转60°到AQ,连接PQ、QC.(1)求证:△BAP≌△CAQ.(2)若PA=3,PB=4,∠APB=150°,求PC的长度.23.(8分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球1个,若从中随机摸出一个球,这个球是白球的概率为(1)求袋子中白球的个数(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,请用画树状图或列表的方法,求两次都摸到白球的概率.24.(8分)已知:抛物线y=2ax2﹣ax﹣3(a+1)与x轴交于点AB(点A在点B的左侧).(1)不论a取何值,抛物线总经过第三象限内的一个定点C,请直接写出点C的坐标;(2)如图,当AC⊥BC时,求a的值和AB的长;(3)在(2)的条件下,若点P为抛物线在第四象限内的一个动点,点P的横坐标为h,过点P作PH⊥x轴于点H,交BC于点D,作PE∥AC交BC于点E,设△ADE的面积为S,请求出S与h的函数关系式,并求出S取得最大值时点P的坐标.25.(10分)2019年鞍山市出现了猪肉价格大幅上涨的情况,经过对我市某猪肉经销商的调查发现,当猪肉售价为60元/千克时,每天可以销售80千克,日销售利润为1600元(不考虑其他因素对利润的影响):售价每上涨1元,则每天少售出2千克;若设猪肉售价为x元/千克,日销售量为y千克.(1)求y关于x的函数解析式(不要求写出自变量的取值范围);(2)若物价管理部门规定猪肉价格不高于68元/千克,当售价是多少元/千克时,日销售利润最大,最大利润是多少元.26.(10分)从甲、乙、丙、丁4名同学中随机抽取同学参加学校的座谈会(1)抽取一名同学,恰好是甲的概率为(2)抽取两名同学,求甲在其中的概率。

参考答案一、选择题(每小题3分,共30分)1、A【解析】先算cos60°=,再计算即可.【详解】∵∴故答案选A.【点睛】本题考查特殊角的三角函数值,能够准确记忆60°角的余弦值是解题的关键.2、C【分析】连接AP,根据同角的余角相等可得∠ABP=∠CBP′,然后利用“边角边”证明△ABP和△CBP′全等,根据全等三角形对应边相等可得AP=CP′,连接PP′,根据旋转的性质可得△PBP′是等腰直角三角形,然后求出∠AP′P是直角,再利用勾股定理用AP′表示出PP′,又等腰直角三角形的斜边等于直角边的倍,代入整理即可得解.【详解】解:如图,连接AP,∵BP绕点B顺时针旋转90°到BP′,∴BP=BP′,∠ABP+∠ABP′=90°,又∵△ABC是等腰直角三角形,∴AB=BC,∠CBP′+∠ABP′=90°,∴∠ABP=∠CBP′,在△ABP和△CBP′中,∵,∴△ABP≌△CBP′(SAS),∴AP=P′C,∵P′A:P′C=1:4,∴AP=4P′A,连接PP′,则△PBP′是等腰直角三角形,∴∠BP′P=45°,PP′=PB,∵∠AP′B=135°,∴∠AP′P=135°﹣45°=90°,∴△APP′是直角三角形,设P′A=x,则AP=4x,∴PP'=,∴P'B=PB=,∴P′A:P′B=2:,故选:C.【点睛】本题主要考查的是全等三角形的性质以及判定,掌握全等三角形的五种判定方法的解本题的关键.3、D【分析】依据矩形的性质进行判断即可.【详解】解:矩形不具备的性质是对角线互相垂直,故选:D.【点睛】本题考查了矩形的性质,熟练掌握性质是解题的关键4、D【分析】由题意易证,则有,进而可得,最后根据勾股定理可求解.【详解】解:∵△ABC是等腰直角三角形,∴∠BAC=90°,AB=AC,∵将△ABP绕点A逆时针旋转后,能与△ACP′重合,∴,∵AP=3cm,∴,∵,∴,即,∴是等腰直角三角形,∴;故选D.【点睛】本题主要考查旋转的性质及等腰直角三角形的性质与判定,熟练掌握旋转的性质及等腰直角三角形的性质与判定是解题的关键.5、A【分析】根据“二次函数在y轴左侧y随x的增大而增大”求出a的取值范围,然后解分式方程,最后根据整数解及a的范围即可求出a的值,从而得到结果.【详解】∵关于的二次函数在轴左侧随的增大而增大,,解得,把两边都乘以,得,整理,得,当时,,,∴使为整数,且的整数的值为2、3、5,∴满足条件的整数的和为.故选:A.【点睛】本题考查了二次函数的性质与对称轴,解分式方程,解分式方程时注意符号的变化.6、C【分析】利用不管抛多少次,硬币正面朝上的概率都是,进而得出答案.【详解】解:因为一枚质地均匀的硬币只有正反两面,

所以不管抛多少次,硬币正面朝上的概率都是,

所以掷一枚质地均匀的硬币10次,

可能有7次正面向上;

故选:C.【点睛】本题考查了可能性的大小,明确概率的意义是解答的关键,用到的知识点为:概率=所求情况数与总情况数之比.7、C【分析】本小题先将二次项的系数提出后再将括号里运用配方法配成完全平方式即可.【详解】由得:故选C【点睛】本题考查的知识点是配方法,掌握配方的方法及防止漏乘是关键.8、B【解析】根据垂径定理,构造直角三角形,连接OC,在RT△OCE中应用勾股定理即可.【详解】试题解析:由题意连接OC,得OE=OB-AE=4-1=3,CE=CD==,CD=2CE=2,故选B.9、B【解析】试题解析:如图所示:分两种情况进行讨论:当时,抛物线经过点时,抛物线的开口最小,取得最大值抛物线经过△ABC区域(包括边界),的取值范围是:当时,抛物线经过点时,抛物线的开口最小,取得最小值抛物线经过△ABC区域(包括边界),的取值范围是:故选B.点睛:二次函数二次项系数决定了抛物线开口的方向和开口的大小,开口向上,开口向下.的绝对值越大,开口越小.10、C【解析】∵△BMN是由△BMC翻折得到的,∴BN=BC,又点F为BC的中点,在Rt△BNF中,sin∠BNF=,∴∠BNF=30°,∠FBN=60°,∴∠ABN=90°-∠FBN=30°,故②正确;在Rt△BCM中,∠CBM=∠FBN=30°,∴tan∠CBM=tan30°=,∴BC=CM,AB2=3CM2故③正确;∠NPM=∠BPF=90°-∠MBC=60°,∠NMP=90°-∠MBN=60°,∴△PMN是等边三角形,故④正确;由题给条件,证不出CM=DM,故①错误.故正确的有②③④,共3个.故选C.二、填空题(每小题3分,共24分)11、【分析】直接根据正切的定义求解即可.【详解】在Rt△ABC中,约为,高为,∵tan∠ABC=,∴BC=m.故答案为:.【点睛】本题考查了解直角三角形的应用,解决此问题的关键在于正确理解题意得基础上建立数学模型,把实际问题转化为数学问题.12、【分析】已知抛物线的顶点式,写出顶点坐标,用x、y代表顶点的横坐标、纵坐标,消去a得出x、y的关系式.【详解】解:二次函数中,顶点坐标为:,设顶点坐标为(x,y),∴①,②,由①2+②,得,∴;故答案为:.【点睛】本题考查了二次函数的性质,根据顶点式求顶点坐标的方法是解题的关键,注意运用消元的思想解题.13、瓮中捉鳖(答案不唯一)【分析】此题根据事件的可能性举例即可.【详解】必然事件就是一定会发生的,例如:瓮中捉鳖等,故答案:瓮中捉鳖(答案不唯一).【点睛】此题考查事件的可能性:必然事件的概念.14、【分析】先根据平方、绝对值的非负性求得、,再利用锐角三角函数确定、的度数,最后根据直角三角形内角和求得.【详解】解:∵∴∴∴∴.故答案是:【点睛】本题考查了平方、绝对值的非负性,锐角三角函数以及三角形内角和,熟悉各知识点是解题的关键.15、2.【解析】试题分析:∵将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′,图中阴影部分的面积为8,∴5﹣m=4,∴m=2,∴A(2,2),∴k=2×2=2.故答案为2.考点:2.反比例函数系数k的几何意义;2.平移的性质;3.综合题.16、或【分析】根据中位线的性质,得出的关系式,代入即可.【详解】根据中位线的性质故我们可得当均成立,故关系式正确∴故答案为:或.【点睛】本题考查了归纳总结的问题,掌握中位线的性质得出的关系式是解题的关键.17、(-1010,10102)【分析】根据二次函数性质可得出点A1的坐标,求得直线A1A2为y=x+2,联立方程求得A2的坐标,即可求得A3的坐标,同理求得A4的坐标,即可求得A5的坐标,根据坐标的变化找出变化规律,即可找出点A2019的坐标.【详解】∵A点坐标为(1,1),

∴直线OA为y=x,A1(-1,1),

∵A1A2∥OA,

∴直线A1A2为y=x+2,

解得或,

∴A2(2,4),

∴A3(-2,4),

∵A3A4∥OA,

∴直线A3A4为y=x+6,

解得或,

∴A4(3,9),

∴A5(-3,9)

…,

∴A2019(-1010,10102),

故答案为(-1010,10102).【点睛】此题考查二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.18、2【分析】根据题意:的最高次数为2,由开口向上知二次项系数大于0,据此求解即可.【详解】∵是二次函数,

∴,即

解得:,

又∵图象的开口向上,

∴,

∴.故答案为:.【点睛】本题综合考查了二次函数的性质及定义,要注意二次项系数的取值范围.三、解答题(共66分)19、(1)证明见解析;(2)【解析】分析:(1)根据圆内接四边形的性质得到∠DCE=∠BAD,根据圆周角定理得到∠DCE=∠BAD,证明即可;(2)证明△DCE∽△ACD,根据相似三角形的性质列出比例式,计算即可.详解:(1)证明:∵四边形ABCD是⊙O内接四边形,∴∠BAD+∠BCD=180°,∵∠BCD+∠DCE=180°,∴∠DCE=∠BAD,∵=,∴∠BAD=∠ACD,∴∠DCE=∠ACD,∴CD平分∠ACE;(2)解:∵AC为直径,∴∠ADC=90°,∵DE⊥BC,∴∠DEC=90°,∴∠DEC=∠ADC,∵∠DCE=∠ACD,∴△DCE∽△ACD,∴=,即=,∴CD=3.点睛:本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的任意一个外角等于它的内对角是解题的关键.20、(1)y=-x2-2x+3(2)(-,)(3)满足条件的点P的坐标为P(-1,1)或(-1,-2)【详解】(1)∵抛物线()与x轴交于点A(1,0)和点B(﹣3,0),∴OB=3,∵OC=OB,∴OC=3,∴c=3,∴,解得:,∴所求抛物线解析式为:;(2)如图2,过点E作EF⊥x轴于点F,设E(a,)(﹣3<a<0),∴EF=,BF=a+3,OF=﹣a,∴S四边形BOCE==BF•EF+(OC+EF)•OF===,∴当a=时,S四边形BOCE最大,且最大值为.此时,点E坐标为(,);(3)∵抛物线的对称轴为x=﹣1,点P在抛物线的对称轴上,∴设P(﹣1,m),∵线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,如图,∴PA=PA′,∠APA′=90°,如图3,过A′作A′N⊥对称轴于N,设对称轴与x轴交于点M,∴∠NPA′+∠MPA=∠NA′P+∠NPA′=90°,∴∠NA′P=∠MPA,在△A′NP与△APM中,∵∠A′NP=∠AMP=90°,∠NA′P=∠MPA,PA′=AP,∴△A′NP≌△PMA,∴A′N=PM=|m|,PN=AM=2,∴A′(m﹣1,m+2),代入得:,解得:m=1,m=﹣2,∴P(﹣1,1),(﹣1,﹣2).考点:1.二次函数综合题;2.二次函数的最值;3.最值问题;4.旋转的性质;5.综合题;6.压轴题.21、(1);(2);(3)【分析】(1)根据翻折性质可得,得,.结合矩形性质得证,根据平行线性质得..设.得,由可求出x;(2)结合(1)方法可得,,再根据勾股定理求PC,再求,中,;(3)作图分析:当P与C重合时,PC最小,是0;当N与C重合时,PC最大=.【详解】解:(1)沿直线翻折,点落在点处,.,.∵四边形是矩形,.,....∵四边形是矩形,...设.∵四边形是矩形,,,..,.解得,即.(2)沿直线翻折,点落在点处,.,.,..,,..,..在中,,...(3)如图当P与C重合时,PC最小,是0;如图当N与C重合时,PC最大===5;所以,此时PB=2,设PM=x,则BM=4-x由PB2+BM2=PM2可得22+(4-x)2=x2解得x=,BM=4-x=所以MN=综合上述:,当最大时.【点睛】考核知识点:矩形性质,直角三角形性质,三角函数.构造直角三角形并解直角三角形是关键.22、(1)见解析;(2)1【分析】(1)直接利用旋转的性质结合全等三角形的判定与性质得出答案;

(2)直接利用等边三角形的性质结合勾股定理即可得出答案.【详解】(1)证明:∵线段AP绕点A逆时针旋转60°到AQ,∴AP=AQ,∠PAQ=60°,∴△APQ是等边三角形,∠PAC+∠CAQ=60°,∵△ABC是等边三角形,∴∠BAP+∠PAC=60°,AB=AC,∴∠BAP=∠CAQ,在△BAP和△CAQ中,,∴△BAP≌△CAQ(SAS);(2)∵由(1)得△APQ是等边三角形,∴AP=PQ=3,∠AQP=60°,∵∠APB=110°,∴∠PQC=110°﹣60°=90°,∵PB=QC,∴QC=4,∴△PQC是直角三角形,∴PC===1.【点睛】此题主要考查了旋转的性质以及全等三角形的判定与性质和勾股定理等知识,正确应用等边三角形的性质是解题关键.23、(1)袋子中白球有2个;(2)(两次都摸到白球)【分析】(1)设袋子中白球有个,根据摸出白球的概率=白球的个数÷红、白球的总数,列出方程即可求出白球的个数;(2)根据题意,列出表格,然后根据表格和概率公式求概率即可.【详解】解:(1)设袋子中白球有个,则,解得,经检验是该方程的解,答:袋子中白球有2个.(2)列表如下:红白1白2红(红,红)(红,白1)(红,白2)白1(白1,红)(白1,白1)(白1,白2)白2(白2,红)(白2,白1)(白2,白2)由上表可知,总共有9种等可能结果,其中两次都摸到白球的有4种,所以(两次都摸到白球)【点睛】此题考查的是根据概率求白球的数量和求概率问题,掌握列表法和概率公式是解决此题的关键.24、(1)第三象限内的一个定点C为(﹣1,﹣3);(2)a=,AB=;(3)S=﹣h2+h﹣,当h=时,S的最大值为,此时点P(,﹣).【分析】(1)对抛物线解析式进行变形,使a的系数为0,解出x的值,即可确定点C的坐标;(2)设函数对称轴与x轴交点为M,根据抛物线的对称轴可求出M的坐标,然后利用勾股定理求出CM的长度,再利用直角三角形的斜边的中线等于斜边的一半求出AB的长度,则A,B两点的坐标可求,再将A,B两点代入解析式中即可求出a的值;(3)过点E作EF⊥PH于点F,先用待定系数法求出直线BC的解析式,然后将P,D的坐标用含h的代数式表示出来,最后利用S=S△ABE﹣S△ABD=×AB×(yD﹣yE)求解【详解】(1)y=2ax2﹣ax﹣3(a+1)=a(2x2﹣x﹣3)﹣3,令2x2﹣x﹣3=0,解得:x=或﹣1,故第三象限内的一个定点C为(﹣1,﹣3);(2)函数的对称轴为:x=,设函数对称轴与x轴交点为M,则其坐标为:(,0),则由勾股定理得CM=,则AB=2CM=,∴则点A、B的坐标分别为:(﹣3,0)、(,0);将点A的坐标代入函数表达式得:18a+3a﹣3a﹣3=0,解得:a=,函数的表达式为:y=(x+3)(x﹣)=x2﹣x﹣;(3)过点E作EF⊥PH于点F,设:∠ABC=α,则∠ABC=∠HPE=∠DEF=α,设直线BC的解析式为将点B、C坐标代入一次函数表达式得解得:∴直线BC的表达式为:,设点P(h,)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论