版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年浙江省宁波市东方中学数学九上期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已知,是关于的一元二次方程的两个不相等的实数根,且满足,则的值是()A.3 B.1 C.3或 D.或12.已知,满足,则的值是().A.16 B. C.8 D.3.如图所示的几何体的俯视图是()A. B. C. D.4.将二次函数的图象先向右平移2个单位长度,再向上平移3个单位长度,下列关于平移后所得抛物线的说法,正确的是()A.开口向下 B.经过点 C.与轴只有一个交点 D.对称轴是直线5.如图,在中,,,,是线段上的两个动点,且,过点,分别作,的垂线相交于点,垂足分别为,.有以下结论:①;②当点与点重合时,;③;④.其中正确的结论有()A.1个 B.2个 C.3个 D.4个6.如图,是的外接圆,是的直径,若的半径是,,则()A. B. C. D.7.已知函数的图象如图所示,则一元二次方程根的存在情况是A.没有实数根 B.有两个相等的实数根C.有两个不相等的实数根 D.无法确定8.抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位 B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位 D.先向右平移2个单位,再向上平移3个单位9.下列叙述,错误的是()A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直平分的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线相等的四边形是矩形10.下列方程中,为一元二次方程的是()A.x=2 B.x+y=3 C. D.11.下列方程中是关于的一元二次方程的是()A. B. C., D.12.如图,四边形ABCD内接于⊙0,四边形ABCO是平行四边形,则∠ADC的度数为()A.30° B.45° C.60° D.75°二、填空题(每题4分,共24分)13.如图,点A、B、C在半径为9的⊙O上,的长为,则∠ACB的大小是___.14.小明与父母国庆节从杭州乘动车回台州,他们买到的火车票是同一排相邻的三个座位,那么小明恰好坐在父母中间的概率是_________.15.一圆锥的母线长为5,底面半径为3,则该圆锥的侧面积为________.16.若抛物线y=2x2+6x+m与x轴有两个交点,则m的取值范围是_____.17.若点A(1,y1)和点B(2,y2)在反比例函数y=﹣的图象上,则y1与y2的大小关系是_____.18.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为_______米(结果保留根号).三、解答题(共78分)19.(8分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?20.(8分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?21.(8分)如图,已知O是坐标原点,B,C两点的坐标分别为(3,-1),(2,1).(1)以O点为位似中心,在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;(2)如果△OBC内部一点M的坐标为(x,y),写出B,C,M的对应点B′,C′,M′的坐标.22.(10分)如图,AB是半圆O的直径,AD为弦,∠DBC=∠A.(1)求证:BC是半圆O的切线;(2)若OC∥AD,OC交BD于E,BD=6,CE=4,求AD的长.23.(10分)如图,、、、分别为反比例函数与图象上的点,且轴,轴,与相交于点,连接、.(1)若点坐标,点坐标,请直接写出点、点、点的坐标;(2)连接、,若四边形是菱形,且点的坐标为,请直接写出、之间的数量关系式;(3)若、为动点,与是否相似?为什么?24.(10分)如图,二次函数的图象经过坐标原点,与轴的另一个交点为A(-2,0).(1)求二次函数的解析式(2)在抛物线上是否存在一点P,使△AOP的面积为3,若存在请求出点P的坐标,若不存在,请说明理由.25.(12分)如图1,抛物线平移后过点A(8,,0)和原点,顶点为B,对称轴与轴相交于点C,与原抛物线相交于点D.(1)求平移后抛物线的解析式并直接写出阴影部分的面积;(2)如图2,直线AB与轴相交于点P,点M为线段OA上一动点,为直角,边MN与AP相交于点N,设,试探求:①为何值时为等腰三角形;②为何值时线段PN的长度最小,最小长度是多少.26.如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,求∠OFA的度数
参考答案一、选择题(每题4分,共48分)1、A【分析】根据一元二次方程根与系数的关系,计算出、再代入分式计算,即可求得.【详解】解:由根与系数的关系得:,,∴即,解得:或,而当时,原方程△,无实数根,不符合题意,应舍去,∴的值为1.故选A.【点睛】本题考查一元二次方程中根与系数的关系应用,难度不大,求得结果后需进行检验是顺利解题的关键.2、A【分析】先把等式左边分组因式分解,化成非负数之和等于0形式,求出x,y即可.【详解】由得所以=0,=0所以x=-2,y=-4所以=(-4)-2=16故选:A【点睛】考核知识点:因式分解运用.灵活拆项因式分解是关键.3、D【解析】试题分析:根据俯视图的作法即可得出结论.从上往下看该几何体的俯视图是D.故选D.考点:简单几何体的三视图.4、C【分析】根据二次函数图象和性质以及二次函数的平移规律,逐一判断选项,即可得到答案.【详解】∵二次函数的图象先向右平移2个单位长度,再向上平移3个单位长度,∴平移后的二次函数解析式为:,∵2>0,∴抛物线开口向上,故A错误,∵,∴抛物线不经过点,故B错误,∵抛物线顶点坐标为:(2,0),且开口向上,∴抛物线与轴只有一个交点,故C正确,∵抛物线的对称轴为:直线x=2,∴D错误.故选C.【点睛】本题主要考查二次函数的图象和性质以及平移规律,掌握“左加右减,上加下减”是解题的关键.5、B【分析】利用勾股定理判定①正确;利用三角形中位线可判定②正确;③中利用相似三角形的性质;④中利用全等三角形以及勾股定理即可判定其错误.【详解】∵,,∴,故①正确;∵当点与点重合时,CF⊥AB,FG⊥AC,∴FG为△ABC的中位线∴GC=MH=,故②正确;ABE不是三角形,故不可能,故③错误;∵AC=BC,∠ACB=90°∴∠A=∠5=45°将△ACF顺时针旋转90°至△BCD,则CF=CD,∠1=∠4,∠A=∠6=45°,BD=AF∵∠2=45°∴∠1+∠3=∠3+∠4=45°∴∠DCE=∠2在△ECF和△ECD中,CF=CD,∠DCE=∠2,CE=CE∴△ECF≌△ECD(SAS)∴EF=DE∵∠5=45°∴∠BDE=90°∴,即故④错误;故选:B.【点睛】此题主要考查等腰直角三角形、三角形中位线以及全等三角形的性质、勾股定理的运用,熟练掌握,即可解题.6、A【分析】连接CD,得∠ACD=90°,由圆周角定理得∠B=∠ADC,进而即可得到答案.【详解】连接CD,∵AD是直径,∴∠ACD=90°,∵的半径是,∴AD=3,∵∠B=∠ADC,∴,故选A.【点睛】本题主要考查圆周角定理以及正弦三角函数的定义,掌握圆周角定理以及正弦三角函数的定义,是解题的关键.7、C【详解】试题分析:一次函数的图象有四种情况:①当,时,函数的图象经过第一、二、三象限;②当,时,函数的图象经过第一、三、四象限;③当,时,函数的图象经过第一、二、四象限;④当,时,函数的图象经过第二、三、四象限.由图象可知,函数的图象经过第二、三、四象限,所以,.根据一元二次方程根的判别式,方程根的判别式为,当时,,∴方程有两个不相等的实数根.故选C.8、B【解析】根据“左加右减,上加下减”的原则进行解答即可:∵y=x2,∴平移过程为:先向左平移2个单位,再向下平移3个单位.故选B.9、D【分析】根据菱形的判定方法,矩形的判定方法,正方形的判定方法,平行四边形的判定方法分别分析即可得出答案.【详解】解:A、根据对角线互相垂直的平行四边形可判定为菱形,再有对角线且相等可判定为正方形,此选项正确,不符合题意;B、根据菱形的判定方法可得对角线互相垂直平分的四边形是菱形正确,此选项正确,不符合题意;C、对角线互相平分的四边形是平行四边形是判断平行四边形的重要方法之一,此选项正确,不符合题意;D、根据矩形的判定方法:对角线互相平分且相等的四边形是矩形,因此只有对角线相等的四边形不能判定是矩形,此选项错误,符合题意;选:D.【点睛】此题主要考查了菱形,矩形,正方形,平行四边形的判定,关键是需要同学们准确把握矩形、菱形正方形以及平行四边形的判定定理之间的区别与联系.10、C【解析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】A、x=2是一元一次方程,故A错误;B、x+y=3是二元一次方程,故B错误;C、是一元二次方程,故C正确;D、是分式方程,故D错误;故选:C.【点睛】本题考查的是一元二次方程的定义,掌握一元二次方程的定义是关键.11、A【分析】根据一元二次方程的定义解答.【详解】A、是一元二次方程,故A正确;
B、有两个未知数,不是一元二次方程,故B错误;
C、是分式方程,不是一元二次方程,故C正确;
D、a=0时不是一元二次方程,故D错误;
故选:A.【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是1.12、C【分析】由题意根据平行四边形的性质得到∠ABC=∠AOC,根据圆内接四边形的性质、圆周角定理列式计算即可.【详解】解:∵四边形ABCO是平行四边形,∴∠ABC=∠AOC,∵四边形ABCD内接于⊙O,∴∠ABC+∠ADC=180°,由圆周角定理得,∠ADC=∠AOC,∴∠ADC=60°,故选:C.【点睛】本题考查的是圆内接四边形的性质、圆周角定理以及平行四边形的性质,掌握圆内接四边形的对角互补是解题的关键.二、填空题(每题4分,共24分)13、20°.【分析】连接OA、OB,由弧长公式的可求得∠AOB,然后再根据同弧所对的圆周角等于圆心角的一半可得∠ACB.【详解】解:连接OA、OB,由弧长公式的可求得∠AOB=40°,再根据同弧所对的圆周角等于圆心角的一半可得∠ACB=20°.故答案为:20°【点睛】本题考查弧长公式;圆周角定理,题目难度不大,掌握公式正确计算是解题关键.14、【分析】根据题意列树状图解答即可.【详解】由题意列树状图:他们的座位共有6种不同的位置关系,其中小明恰好坐在父母中间的2种,∴小明恰好坐在父母中间的概率=,故答案为:.【点睛】此题考查事件概率的计算,正确列树状图解决问题是解题的关键.15、15π【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】圆锥的侧面积=•2π•3•5=15π.
故答案是:15π.【点睛】考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16、【分析】由抛物线与x轴有两个交点,可得出关于m的一元一次不等式,解之即可得出m的取值范围.【详解】∵抛物线y=2x2+6x+m与x轴有两个交点,∴△=62﹣4×2m=36﹣8m>0,∴m.故答案为:m.【点睛】本题考查了抛物线与x轴的交点,牢记“当△=b2﹣4ac>0时,抛物线与x轴有2个交点”是解答本题的关键.17、y1<y1【分析】由k=-1可知,反比例函数y=﹣的图象在每个象限内,y随x的增大而增大,则问题可解.【详解】解:∵反比例函数y=﹣中,k=﹣1<0,∴此函数在每个象限内,y随x的增大而增大,∵点A(1,y1),B(1,y1)在反比例函数y=﹣的图象上,1>1,∴y1<y1,故答案为y1<y1.【点睛】本题考查了反比例函数的增减性,解答关键是注意根据比例系数k的符号确定,在各个象限内函数的增减性解决问题.18、一4【分析】分析:利用特殊三角函数值,解直角三角形,AM=MD,再用正切函数,利用MB求CM,作差可求DC.【详解】因为∠MAD=45°,AM=4,所以MD=4,因为AB=8,所以MB=12,因为∠MBC=30°,所以CM=MBtan30°=4.所以CD=4-4.【点睛】本题考查了解直角三角形的应用,熟练掌握三角函数的相关定义以及变形是解题的关键.三、解答题(共78分)19、(1)(300﹣10x).(2)每本书应涨价5元.【解析】试题分析:(1)每本涨价1元,则每天就会少售出10本,设每本书上涨了x元,则每天就会少售出10x本,所以每天可售出书(300﹣10x)本;(2)根据每本图书的利润×每天销售图书的数量=总利润列出方程,解方程即可求解.试题解析:(1)∵每本书上涨了x元,∴每天可售出书(300﹣10x)本.故答案为300﹣10x.(2)设每本书上涨了x元(x≤10),根据题意得:(40﹣30+x)(300﹣10x)=3750,整理,得:x2﹣20x+75=0,解得:x1=5,x2=15(不合题意,舍去).答:若书店想每天获得3750元的利润,每本书应涨价5元.20、(1);(2)该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元;(3)该农户想要每天获得150元的销售利润,销售价应定为每千克25元.【分析】(1)根据销售额=销售量×销售价单x,列出函数关系式.(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值.(3)把y=150代入(2)的函数关系式中,解一元二次方程求x,根据x的取值范围求x的值.【详解】解:(1)由题意得:,∴w与x的函数关系式为:.(2),∵﹣2<0,∴当x=30时,w有最大值.w最大值为2.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元.(3)当w=150时,可得方程﹣2(x﹣30)2+2=150,解得x1=25,x2=3.∵3>28,∴x2=3不符合题意,应舍去.答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.21、(1)如图所示见解析;(2)B′(-6,2),C′(-4,-2),M′(-2x,-2y).【解析】分析:(1)根据位似图形的性质:以某点为位似中心的两个图形的对应点到位似中心的距离之比等于位似比,且对应点的连线与位似中心在同一直线上,根据位似图形的性质和已知图形的各顶点和位似比,求出位似后的对应点,然后再连接各点.(2)根据位似图形的性质即可求解.详解:(1)如图所示,(2)如图所示:∵B,C两点的坐标分别为(3,-1),(2,1),新图与原图的相似比为2,
∴B′(-6,2),C′(-4,-2),
∵△OBC内部一点M的坐标为(x,y),
∴对应点M′(-2x,-2y).点睛:本题主要考查作位似图形和位似图形的性质,解决本题的关键是要熟练掌握作位似图形的方法和位似图形的性质.22、(1)见解析;(2)AD=4.5.【分析】(1)若证明BC是半圆O的切线,利用切线的判定定理:即证明AB⊥BC即可;
(2)因为OC∥AD,可得∠BEC=∠D=90°,再有其他条件可判定△BCE∽△BAD,利用相似三角形的性质:对应边的比值相等即可求出AD的长.【详解】(1)证明:∵AB是半圆O的直径,
∴BD⊥AD,
∴∠DBA+∠A=90°,
∵∠DBC=∠A,
∴∠DBA+∠DBC=90°即AB⊥BC,
∴BC是半圆O的切线;(2)解:∵OC∥AD,
∴∠BEC=∠D=90°,
∵BD⊥AD,BD=6,
∴BE=DE=3,
∵∠DBC=∠A,
∴△BCE∽△BAD,,即;∴AD=4.5【点睛】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了相似三角形的判定和性质.23、(1)、、;(2);(3),证明详见解析.【分析】(1)先利用A,B两点求出两个反比例函数的解析式,然后根据C点与A点纵坐标相同,D点与B点横坐标相同即可得到C,D的坐标,然后P的横坐标与B的横坐标相同,纵坐标与A的纵坐标相同;(2)分别把A,C的坐标表示出来,再利用菱形的性质和点P的坐标即可求出答案;(3)设点的坐标为,分别表示出点A,B,C,D的坐标,求出的长度,能够得出,所以【详解】(1)解:∵点在上,点在上∴∴∵轴,轴∴A,C的纵坐标相同,B,D的横坐标相同,点P的横坐标与B的横坐标相同,纵坐标与A的纵坐标相同∴当时,代入到中得,∴点当时,代入到中得,∴点∴,,(2)∵点的坐标为∵轴,轴∴A,C的纵坐标与点P的纵坐标相同当时,代入到中得,∴点当时,代入到中得,∴点∵四边形是菱形∴∴∴(3)解:证明:设点的坐标为则点的坐标为、点的坐标为点的坐标为、点的坐标为,,,,即又【点睛】本题主要考查反比例函数和相似三角形的判定及性质,掌握相似三角形的判定方法是解题的关键.24、(4)y=-x3-3x;(3)(4,-4),(4,-4).【分析】(4)把点(3,3)和点A(-3,3)分别代入函数关系式来求b、c的值;(3)设点P的坐标为(x,-x3-3x),利用三角形的面积公式得到-x3-3x=±4.通过解方程来求x的值,则易求点P的坐标.【详解】解:(4)∵二次函数y=-x3+bx+c的图象经过坐标原点(3,3)∴c=3.又∵二次函数y=-x3+bx+c的图象过点A(-3,3)∴-(-3)3-3b+3=3,∴b=-3.∴所求b、c值分别为-3,3;(3)存在一点P,满足S△AOP=4.设点P的坐标为(x,-x3-3x)∵S△AOP=4∴×3×|-x3-3x|=4∴-x3-3x=±4.当-x3-3x=4时,此方程无解;当-x3-3x=-4时,解得x4=-4,x3=4.∴点P的坐标为(-4,-4)或(4,-4).【点睛】本题考查了抛物线与x轴的交点.解(4)题时,实际上利用待定系数法来求抛物线的解析式.25、(1)平移后抛物线的解析式,=12;(2)①,②当=3时,PN取最小值为.【分析】(1)设平移后抛物线的解析式y=x2+bx,将点A(8,0)代入,根据待定系数法即可求得平移后抛物线的解析式,再根据割补法由三角形面积公式即可求解;(2)作NQ垂直于x轴于点Q,①分当MN=AN时,当AM=AN时,当MN=MA时,三种情况讨论可得△MAN为等腰三角形时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 授权制度在人力资源管理中的应用
- 冷藏租赁协议:化妆品加工专用
- 游乐场物业管理委托招标
- 古镇景区内部便利店租赁合同
- 绿色出行招投标文件评审表
- 地产开盘现场制片协调书
- 休闲娱乐设施钢筋施工合同
- 公司宿舍假期住宿申请流程
- 城市绿化招投标文件审核指南
- 大型影剧院改造工程合同会签表
- (完整文本版)货物验收单
- 广东省深圳市2023一2024学年三年级上学期科学期中核心素养提升试卷
- 江苏省南通市海门区多校2023-2024学年上学期期中联考八年级数学试卷
- 人教版九年级道德与法治 上册 第三单元《文明与家园》大单元整体教学设计
- 铭记历史勿忘国耻(课件)小学生主题班会通用版
- 电能表安装作业指导书
- 新时代外语教育课程思政建设的几点思考
- 食堂副食品配送服务投标方案(技术方案)
- 大象版五年级科学上册第四单元《地壳》全部课件(共5课时)
- (4.43)-在马克思墓前的讲话马克思主义基本原理
- 冬季混凝土施工现场测温安排
评论
0/150
提交评论