2023年上海市建平西学校数学九上期末学业水平测试模拟试题含解析_第1页
2023年上海市建平西学校数学九上期末学业水平测试模拟试题含解析_第2页
2023年上海市建平西学校数学九上期末学业水平测试模拟试题含解析_第3页
2023年上海市建平西学校数学九上期末学业水平测试模拟试题含解析_第4页
2023年上海市建平西学校数学九上期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年上海市建平西学校数学九上期末学业水平测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知线段CD是由线段AB平移得到的,点A(–1,4)的对应点为C(4,7),则点B(–4,–1)的对应点D的坐标为()A.(1,2) B.(2,9) C.(5,3) D.(–9,–4)2.如图,已知“人字梯”的5个踩档把梯子等分成6份,从上往下的第二个踩档与第三个踩档的正中间处有一条60cm长的绑绳EF,tanα=,则“人字梯”的顶端离地面的高度AD是()A.144cm B.180cm C.240cm D.360cm3.﹣3﹣(﹣2)的值是()A.﹣1 B.1 C.5 D.﹣54.已知:如图,矩形ABCD中,AB=2cm,AD=3cm.点P和点Q同时从点A出发,点P以3cm/s的速度沿A→D方向运动到点D为止,点Q以2cm/s的速度沿A→B→C→D方向运动到点D为止,则△APQ的面积S(cm2)与运动时间t(s)之间函数关系的大致图象是()A. B.C. D.5.已知关于的一元二次方程两实数根为、,则()A.3 B.﹣3 C.1 D.﹣16.如图,已知矩形ABCD的对角线AC的长为8,连接矩形ABCD各边中点E、F、G、H得到四边形EFGH,则四边形EFGH的周长为()A.12 B.16 C.24 D.327.若抛物线与坐标轴有一个交点,则的取值范围是()A. B. C. D.8.一组数据:2,3,6,4,3,5,这组数据的中位数、众数分别是()A.3,3 B.3,4 C.3.5,3 D.5,39.用配方法解方程-4x+3=0,下列配方正确的是()A.=1 B.=1 C.=7 D.=410.抛物线,下列说法正确的是()A.开口向下,顶点坐标 B.开口向上,顶点坐标C.开口向下,顶点坐标 D.开口向上,顶点坐标11.如图,在△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,使得△A'B'C的边长是△ABC的边长的2倍.设点B的横坐标是﹣3,则点B'的横坐标是()A.2 B.3 C.4 D.512.已知一组数据:-1,0,1,2,3是它的一个样本,则这组数据的平均值大约是()A.5 B.1 C.-1 D.0二、填空题(每题4分,共24分)13.如图,将一个含30°角的三角尺ABC放在直角坐标系中,使直角顶点C与原点O重合,顶点A,B分别在反比例函数y=﹣和y=的图象上,则k的值为___.14.如图,在平行四边形ABCD中,点E在AD边上,且AE:ED=1:2,若EF=4,则CE的长为___15.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,CE是AB边上的中线,若AD=3,CE=5,则CD等于_____.16.如图1是一种广场三联漫步机,其侧面示意图,如图2所示,其中,.①点到地面的高度是__________.②点到地面的高度是____________.17.△ABC中,∠A=90°,AB=AC,以A为圆心的圆切BC于点D,若BC=12cm,则⊙A的半径为_____cm.18.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为6,则这个正六边形的边心距OM的长为__.三、解答题(共78分)19.(8分)某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个柱子,点恰好在水面中心,安装在柱子顶端处的圆形喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过的任意平面上,水流喷出的高度与水平距离之间的关系如图所示,建立平面直角坐标系,右边抛物线的关系式为.请完成下列问题:(1)将化为的形式,并写出喷出的水流距水平面的最大高度是多少米;(2)写出左边那条抛物线的表达式;(3)不计其他因素,若要使喷出的水流落在池内,水池的直径至少要多少米?20.(8分)如图,在中,∠A=90°,AB=12cm,AC=6cm,点P沿AB边从点A开始向点B以每秒2cm的速度移动,点Q沿CA边从点C开始向点A以每秒1cm的速度移动,P、Q同时出发,用t表示移动的时间.(1)当t为何值时,△QAP为等腰直角三角形?(2)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?21.(8分)近年来,各地“广场舞”噪音干扰的问题倍受关注.相关人员对本地区15~65岁年龄段的市民进行了随机调查,并制作了如下相应的统计图.市民对“广场舞”噪音干扰的态度有以下五种:A.没影响B.影响不大C.有影响,建议做无声运动D.影响很大,建议取缔E.不关心这个问题根据以上信息解答下列问题:(1)根据统计图填空:,A区域所对应的扇形圆心角为度;(2)在此次调查中,“不关心这个问题”的有25人,请问一共调查了多少人?(3)将条形统计图补充完整;(4)若本地共有14万市民,依据此次调查结果估计本地市民中会有多少人给出建议?22.(10分)如图,AB=3AC,BD=3AE,又BD∥AC,点B,A,E在同一条直线上.求证:△ABD∽△CAE23.(10分)根据学习函数的经验,探究函数y=x2+ax﹣4|x+b|+4(b<0)的图象和性质:(1)下表给出了部分x,y的取值;xL﹣3﹣2﹣1012345LyL30﹣1030﹣103L由上表可知,a=,b=;(2)用你喜欢的方式在坐标系中画出函数y=x2+ax﹣4|x+b|+4的图象;(3)结合你所画的函数图象,写出该函数的一条性质;(4)若方程x2+ax﹣4|x+b|+4=x+m至少有3个不同的实数解,请直接写出m的取值范围.24.(10分)如图,在平面直角坐标系中,已知Rt△AOB的两直角边OA、OB分别在x轴、y轴的正半轴上(OA<OB).且OA、OB的长分别是一元二次方程x2﹣14x+48=0的两个根,线段AB的垂直平分线CD交AB于点C,交x轴于点D,点P是直线AB上一个动点,点Q是直线CD上一个动点.(1)求线段AB的长度:(2)过动点P作PF⊥OA于F,PE⊥OB于E,点P在移动过程中,线段EF的长度也在改变,请求出线段EF的最小值:(3)在坐标平面内是否存在一点M,使以点C、P、Q、M为顶点的四边形是正方形,且该正方形的边长为AB长?若存在,请直接写出点M的坐标:若不存在,请说明理由.25.(12分)三根垂直地面的木杆甲、乙、丙,在路灯下乙、丙的影子如图所示.试确定路灯灯泡的位置,再作出甲的影子.(不写作法,保留作图痕迹)26.某商店经营家居收纳盒,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每个收纳盒售价不能高于40元.设每个收纳盒的销售单价上涨了元时(为正整数),月销售利润为元.(1)求与的函数关系式.(2)每个收纳盒的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?

参考答案一、选择题(每题4分,共48分)1、A【解析】∵线段CD是由线段AB平移得到的,而点A(−1,4)的对应点为C(4,7),∴由A平移到C点的横坐标增加5,纵坐标增加3,则点B(−4,−1)的对应点D的坐标为(1,2).故选A2、B【解析】试题分析:解:如图:根据题意可知::△AFO∽△ABD,OF=EF=30cm∴,∴∴CD=72cm,∵tanα=∴∴AD==180cm.故选B.考点:解直角三角形的应用.3、A【解析】利用有理数的减法的运算法则进行计算即可得出答案.【详解】﹣3﹣(﹣2)=﹣3+2=﹣1,故选A.【点睛】本题主要考查了有理数的减法运算,正确掌握运算法则是解题关键.4、C【分析】研究两个动点到矩形各顶点时的时间,分段讨论求出函数解析式即可求解.【详解】解:分三种情况讨论:(1)当0≤t≤1时,点P在AD边上,点Q在AB边上,∴S=,∴此时抛物线经过坐标原点并且开口向上;(1)当1<t≤1.5时,点P与点D重合,点Q在BC边上,∴S==2,∴此时,函数值不变,函数图象为平行于t轴的线段;(2)当1.5<t≤2.5时,点P与点D重合,点Q在CD边上,∴S=×2×(7﹣1t))=﹣t+.∴函数图象是一条线段且S随t的增大而减小.故选:C.【点睛】本题考查了二次函数与几何问题,用分类讨论的数学思想解题是关键,解答时注意研究动点到达临界点时的时间以此作为分段的标准,逐一分析求解.5、A【解析】根据根与系数的关系求解即可.【详解】∵关于的一元二次方程两实数根为、,∴.故选:A.【点睛】本题考查了根与系数的关系,二次项系数为1,常用以下关系:、是方程的两根时,,.6、B【分析】根据三角形中位线定理易得四边形EFGH的各边长等于矩形对角线的一半,而矩形对角线是相等的,都为8,那么就求得了各边长,让各边长相加即可.【详解】解:∵H、G是AD与CD的中点,

∴HG是△ACD的中位线,

∴HG=AC=4cm,

同理EF=4cm,根据矩形的对角线相等,连接BD,得到:EH=FG=4cm,

∴四边形EFGH的周长为16cm.

故选:B.【点睛】本题考查了中点四边形.解题时,利用了“三角形中位线等于第三边的一半”的性质.7、A【分析】根据抛物线y=x2+(2m-1)x+m2与坐标轴有一个交点,可知抛物线只与y轴有一个交点,抛物线与x轴没有交点,据此可解.【详解】解:∵抛物线y=x2+(2m-1)x+m2与坐标轴有一个交点,

抛物线开口向上,m2≥0,

∴抛物线与x轴没有交点,与y轴有1个交点,

∴(2m-1)2-4m2<0

解得故选:A.【点睛】本题考查了二次函数与一元二次方程的关系,解决本题的关键是掌握判别式和抛物线与x轴交点的关系.8、C【分析】把这组数据按照从小到大的顺序排列,第1、4个数的平均数是中位数,在这组数据中出现次数最多的是1,得到这组数据的众数.【详解】要求一组数据的中位数,把这组数据按照从小到大的顺序排列2,1,1,4,5,6,第1、4个两个数的平均数是(1+4)÷2=1.5,所以中位数是1.5,在这组数据中出现次数最多的是1,即众数是1.故选:C.【点睛】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.9、A【解析】用配方法解方程-4x+3=0,移项得:-4x=-3,配方得:-4x+4=1,即=1.故选A.10、C【分析】直接根据顶点式即可得出顶点坐标,根据a的正负即可判断开口方向.【详解】∵,∴抛物线开口向下,由顶点式的表达式可知抛物线的顶点坐标为,∴抛物线开口向下,顶点坐标故选:C.【点睛】本题主要考查顶点式的抛物线的表达式,掌握a对开口方向的影响和顶点坐标的确定方法是解题的关键.11、B【分析】作BD⊥x轴于D,B′E⊥x轴于E,根据位似图形的性质得到B′C=2BC,再利用相似三角形的判定和性质计算即可.【详解】解:作BD⊥x轴于D,B′E⊥x轴于E,则BD∥B′E,由题意得CD=2,B′C=2BC,∵BD∥B′E,∴△BDC∽△B′EC,∴,∴CE=4,则OE=CE−OC=3,∴点B'的横坐标是3,故选:B.【点睛】本题考查的是位似变换、相似三角形的判定和性质,掌握位似变换的概念是解题的关键.12、B【分析】根据平均数的定义计算即可.【详解】这组数据的平均数为(﹣1+0+1+2+3)÷5=1.故选:B.【点睛】本题考查了平均数.掌握平均数的求法是解答本题的关键.二、填空题(每题4分,共24分)13、1.【分析】过A作AE⊥y轴于E过B作BF⊥y轴于F,通过△AOE∽△BOF,得到,设,于是得到AE=-m,,从而得到,,于是求得结果.【详解】解:过作轴于过作轴于,,,,,,,,设,,,,,,.故答案为1.【点睛】此题考查相似三角形的判定与性质,反比例函数图象上点的坐标特征,解题关键在于作辅助线和利用三角函数进行解答.14、1【分析】根据AE:ED=1:2,得到BC=3AE,证明△DEF∽△BCF,得到,求出FC,即可求出CE.【详解】解:∵AE:ED=1:2,∴DE=2AE,∵四边形ABCD是平行四边形,∴BC=AD=AE+DE=3AE,AD∥BC,∴△DEF∽△BCF,∴,∴∴FC=6,∴CE=EF+CF=1,故答案为:1.【知识点】本题考查平行四边形的性质、相似三角形的判定与性质,理解相似三角形的判定与性质定理是解题关键.15、【分析】根据直角三角形的性质得出AE=CE=1,进而得出DE=2,利用勾股定理解答即可.【详解】解:∵在Rt△ABC中,∠ACB=90°,CE为AB边上的中线,CE=1,∴AE=CE=1,∵AD=3,∴DE=2,∵CD为AB边上的高,∴在Rt△CDE中,CD=,故答案为:.【点睛】此题考查勾股定理的应用以及直角三角形的性质,关键是根据直角三角形的性质得出AE=CE=1.16、【分析】①过点A作,垂足为F,得出,BF=40,利用勾股定理可得出AF的长,即A到地面的高度②过点D作,垂足为H,可得出,,可求出AH的长度,从而得出D到底面的高度为AH+AF.【详解】解:过点A作,垂足为F,过点D作,垂足为H,如下图:①∵,∴,BF=40cm∴∴A到地面的高度为:.②∵∴,∴,∴∴AH=10,∴D到底面的高度为AH+AF=(10+)cm.【点睛】本题考查的知识点是等腰三角形的性质以及相似三角形的判定与性质,解题的关键是弄清题意,结合题目作出辅助线,再利用相似三角形性质求解.17、1.【分析】由切线性质知AD⊥BC,根据AB=AC可得BD=CD=AD=BC=1.【详解】解:如图,连接AD,则AD⊥BC,∵AB=AC,∴BD=CD=AD=BC=1,故答案为:1.【点睛】本题考查了圆的切线性质,解题的关键在于掌握圆的切线性质.18、3【解析】连接OB,∵六边形ABCDEF是⊙O内接正六边形,∴∠BOM==30°,∴OM=OB•cos∠BOM=6×=3,故答案为3.三、解答题(共78分)19、(1)喷出的水流距水平面的最大高度是4米.(2).(3)水池的直径至少要6米.【分析】(1)利用配方法将一般式转化为顶点式,即可求出喷出的水流距水平面的最大高度;(2)根据两抛物线的关于y轴对称,即可求出左边抛物线的二次项系数和顶点坐标,从而求出左边抛物线的解析式;(3)先求出右边抛物线与x轴的交点的横坐标,利用对称性即可求出水池的直径的最小值.【详解】解:(1)∵,∴抛物线的顶点式为.∴喷出的水流距水平面的最大高度是4米.(2)∵两抛物线的关于y轴对称∴左边抛物线的a=-1,顶点坐标为(-1,4)左边抛物线的表达式为.(3)将代入,则得,解得,(求抛物线与x轴的右交点,故不合题意,舍去).∵(米)∴水池的直径至少要6米.【点睛】此题考查的是二次函数的应用,掌握将二次函数的一般式转化为顶点式、利用顶点式求二次函数的解析式和求抛物线与x轴的交点坐标是解决此题的关键.20、(1);(2)或.【分析】(1)利用距离=速度×时间可用含t的式子表示AP、CQ、QA的长,根据QA=AP列方程求出t值即可;(2)分△QAP∽△BAC和△QAP∽△CAB两种情况,根据相似三角形的性质列方程分别求出t的值即可.【详解】(1)∵点P的速度是每秒2cm,点Q的速度是每秒1cm,∴,,,∵时,为等腰直角三角形,∴,解得:,∴当时,为等腰直角三角形.(2)根据题意,可分为两种情况,①如图,当∽时,,∴,解得:,②当∽,,∴,解得:,综上所述:当或时,以点Q、A、P为顶点的三角形与相似.【点睛】本题考查了等腰直角三角形腰长相等的性质,考查了相似三角形对应边比值相等的性质,正确列出关于t的方程式是解题的关键.21、(1)32,1;(2)500人;(3)补图见解析;(4)5.88万人.【解析】分析:分析:(1)用1减去A,D,B,E的百分比即可,运用A的百分比乘360°即可.(2)用不关心的人数除以对应的百分比可得.(3)求出25-35岁的人数再绘图.(4)用14万市民乘C与D的百分比的和求解.本题解析:(1)m%=1-33%-20%-5%-10%=32%,所以m=32,A区域所对应的扇形圆心角为:360°×20%=1°,故答案为32,1.(2)一共调查的人数为:25÷5%=500(人).(3)(3)500×(32%+10%)=210(人)25−35岁的人数为:210−10−30−40−70=60(人)(4)14×(32%+10%)=5.88(万人)答:估计本地市民中会有5.88万人给出建议.22、见解析【分析】根据已知条件,易证得AB:AC和BD:AE的值相等,由BD∥AC,得∠EAC=∠B;由此可根据SAS判定两个三角形相似.【详解】证明:∵,∴∵∴∴.【点睛】本题考查了相似三角形的判定,熟练掌握相似三角形的判定是解题的关键.23、(1)﹣1,﹣1;(1)详见解析;(3)函数关于x=1对称;(4)0<m<1.【分析】(1)将点(0,0)、(1,3)代入函数y=x1+ax﹣4|x+b|+4,得到关于a、b的一元二次方程,解方程组即可求得;(1)描点法画图即可;(3)根据图象即可得到函数关于x=1对称;(4)结合图象找,当x=﹣1时,y=﹣1;当x=1,y=3;则当0<m<1时,方程x1+ax﹣4|x+b|+4=x+m至少有3个不同的实数解.【详解】解:(1)将点(0,0)、(1,3)代入函数y=x1+ax﹣4|x+b|+4(b<0),得,解得a=﹣1,b=﹣1,故答案为﹣1,﹣1;(1)画出函数图象如图:(3)该函数的一条性质:函数关于x=1对称;(4)∵方程x1+ax﹣4|x+b|+4=x+m至少有3个不同的实数解∴二次函数y=x1+ax﹣4|x+b|+4的图像与一次函数y=x+m至少有三个交点,根据一次函数图像的变化趋势,∴当0<m<1时,方程x1+ax﹣4|x+b|+4=x+m至少有3个不同的实数解,故答案为0<m<1.【点睛】本题考查了二次函数的综合应用,熟练掌握并灵活运用是解题的关键.24、(1)1;(2);(3)存在,所求点M的坐标为M1(4,11),M2(﹣4,5),M3(2,﹣3),M4(1,3).【分析】(1)利用因式分解法解方程x2﹣14x+48=0,求出x的值,可得到A、B两点的坐标,在Rt△AOB中利用勾股定理求出AB即可.(2)证明四边形PEOF是矩形,推出EF=OP,根据垂线段最短解决问题即可.(3)分两种情况进行讨论:①当点P与点B重合时,先求出BM的解析式为y=x+8,设M(x,x+8),再根据BM=5列出方程(x+8﹣8)2+x2=52,解方程即可求出M的坐标;②当点P与点A重合时,先求出AM的解析式为y=x﹣,设M(x,x﹣),再根据AM=5列出方程(x﹣)2+(x﹣6)2=52,解方程即可求出M的坐标.【详解】解:(1)解方程x2﹣14x+48=0,得x1=6,x2=8,∵OA<OB,∴A(6,0),B(0,8);在Rt△AOB中,∵∠AOB=90°,OA=6,OB=8,∴AB===1.(2)如图,连接OP.∵PE⊥OB,PF⊥OA,∴∠PEO=∠EOF=∠PFO=90°,∴四边形PEOF是矩形,∴EF=OP,根据垂线段最

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论