版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年江苏省姜堰区数学九上期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知点关于轴的对称点在反比例函数的图像上,则实数的值为()A.-3 B. C. D.32.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长六寸,问径几何?”用现代的数学语言表述是:“CD为的直径,弦,垂足为E,CE=1寸,AB=10寸,求直径CD的长”,依题意得CD的长为()A.12寸 B.13寸 C.24寸 D.26寸3.若反比例函数y=(k≠0)的图象经过点(﹣4,),则下列点在该图象上的是()A.(﹣5,2) B.(3,﹣6) C.(2,9) D.(9,2)4.如图,在同一平面直角坐标系中,反比例函数与一次函数y=kx−1(k为常数,且k≠0)的图象可能是()A. B. C. D.5.某水库大坝高米,背水坝的坡度为,则背水面的坡长为()A.40米 B.60米 C.米 D.米6.一元二次方程的根的情况是A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根 D.没有实数根7.若,则()A. B. C. D.8.一个不透明的袋子中装有10个只有颜色不同的小球,其中2个红球,3个黄球,5个绿球,从袋子中任意摸出一个球,则摸出的球是绿球的概率为()A. B. C. D.9.化简的结果是A.-9 B.-3 C.±9 D.±310.如图,一人站在两等高的路灯之间走动,为人在路灯照射下的影子,为人在路灯照射下的影子.当人从点走向点时两段影子之和的变化趋势是()A.先变长后变短 B.先变短后变长C.不变 D.先变短后变长再变短11.如图,点M为反比例函数y=上的一点,过点M作x轴,y轴的垂线,分别交直线y=-x+b于C,D两点,若直线y=-x+b分别与x轴,y轴相交于点A,B,则AD·BC的值是()A.3 B.2 C.2 D.12.下列二次函数中有一个函数的图像与x轴有两个不同的交点,这个函数是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,∠C=∠E=90°,AC=3,BC=4,AE=2,则AD=_________.14.方程x2﹣4x﹣6=0的两根和等于_____,两根积等于_____.15.如图,在平面直角坐标系中,已知A(1.5,0),D(4.5,0),△ABC与△DEF位似,原点O是位似中心.若DE=7.5,则AB=_____.16.半径为4cm,圆心角为60°的扇形的面积为cm1.17.如图是一个圆环形黄花梨木摆件的残片,为求其外圆半径,小林在外圆上任取一点A,然后过点A作AB与残片的内圆相切于点D,作CD⊥AB交外圆于点C,测得CD=15cm,AB=60cm,则这个摆件的外圆半径是_____cm.18.抛物线与x轴只有一个公共点,则m的值为________.三、解答题(共78分)19.(8分)如图,一次函数的图象与反比例函数(为常数,且)的图象交于A(1,a)、B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.20.(8分)在Rt△ABC中,∠C=90°,AC=,BC=.解这个直角三角形.21.(8分)已知抛物线y=x2+mx﹣10与x轴的一个交点是(﹣,0),求m的值及另一个交点坐标.22.(10分)如图,已知A(-4,2)、B(n,-4)是一次函数的图象与反比例函数的图象的两个交点.(1)求此反比例函数和一次函数的解析式;(2)求△AOB的面积;23.(10分)近年来,“在初中数学教学候总使用计算器是否直接影响学生计算能力的发展”这一问题受到了广泛关注,为此,某校随机调查了n名学生对此问题的看法(看法分为三种:没有影响,影响不大,影响很大),并将调查结果绘制成如下不完整的统计表和扇形统计图,根据统计图表提供的信息,解答下列问题:n名学生对使用计算器影响计算能力的发展看法人数统计表看法
没有影响
影响不大
影响很大
学生人数(人)
40
60
m
(1)求n的值;(2)统计表中的m=;(3)估计该校1800名学生中认为“影响很大”的学生人数.24.(10分)已知,如图,△ABC中,AD是中线,且CD2=BE·BA.求证:ED·AB=AD·BD.25.(12分)如图,在中,,是斜边上的中线,以为直径的分别交、于点、,过点作,垂足为.(1)若的半径为,,求的长;(2)求证:与相切.26.如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连结CD.(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.
参考答案一、选择题(每题4分,共48分)1、A【分析】先根据关于x轴对称的点的坐标特征确定A'的坐标为,然后把A′的坐标代入中即可得到k的值.【详解】解:点关于x轴的对称点A'的坐标为,
把A′代入,得k=-1×1=-1.
故选:A.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.2、D【分析】连接AO,设直径CD的长为寸,则半径OA=OC=寸,然后利用垂径定理得出AE,最后根据勾股定理进一步求解即可.【详解】如图,连接AO,设直径CD的长为寸,则半径OA=OC=寸,∵CD为的直径,弦,垂足为E,AB=10寸,∴AE=BE=AB=5寸,根据勾股定理可知,在Rt△AOE中,,∴,解得:,∴,即CD长为26寸.【点睛】本题主要考查了垂径定理与勾股定理的综合运用,熟练掌握相关概念是解题关键.3、B【分析】根据反比例函数y=(k≠0)的图象经过点(﹣4,)求出k的值,进而根据在反比例函数图像上的点的横纵坐标的积应该等于其比例系数对各选项进行代入判断即可.【详解】∵若反比例函数y=(k≠0)的图象经过点(﹣4,),∴k=﹣4×=﹣18,A:,故不在函数图像上;B:,故在函数图像上;C:,故不在函数图像上;D:,故不在函数图像上.故选:B.【点睛】本题主要考查了反比例函数图像上点的坐标特征,求出k的值是解题关键.4、B【分析】分k>0和k<0两种情况,分别判断反比例函数的图象所在象限及一次函数y=-kx-1的图象经过的象限.再对照四个选项即可得出结论.【详解】当k>0时,-k<0,
∴反比例函数的图象在第一、三象限,一次函数y=kx-1的图象经过第一、三、四象限;
当k<0时,-k>0,
∴反比例函数的图象在第二、四象限,一次函数y=kx-1的图象经过第二、三、四象限.
故选:B.【点睛】本题考查了反比例函数的图象与性质以及一次函数图象与性质,熟练掌握两种函数的性质并分情况讨论是解题的关键.5、A【解析】坡面的垂直高度h和水平宽度l的比叫做坡度(或坡比),我们把斜坡面与水平面的夹角叫做坡角,若用α表示,可知坡度与坡角的关系式,tanα(坡度)=垂直距离÷水平距离,根据公式可得水平距离,依据勾股定理可得问题的答案.【详解】∵大坝高20米,背水坝的坡度为1:,
∴水平距离=20×=20米.
根据勾股定理可得背水面的坡长为40米.
故选A.【点睛】本题考查解直角三角形的应用-坡度、坡角的有关知识,熟悉且会灵活应用坡度公式是解此题的关键.6、D【分析】由根的判别式△判断即可.【详解】解:△=b2-4ac=(-4)2-4×5=-4<0,方程没有实数根.故选择D.【点睛】本题考查了一元二次方程根与判别式的关系.7、B【解析】根据合并性质解答即可,对于实数a,b,c,d,且有b≠0,d≠0,如果,则有.【详解】,,,故选:.【点睛】本题考查了比例的性质,熟练掌握合比性质是解答本题的关键.合比性质:在一个比例等式中,第一个比例的前后项之和与第一个比例的后项的比,等于第二个比例的前后项之和与第二个比例的后项的比.8、D【解析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.【详解】解:绿球的概率:P==,故选:D.【点睛】本题考查概率相关概念,熟练运用概率公式计算是解题的关键.9、B【分析】根据二次根式的性质即可化简.【详解】=-3故选B.【点睛】此题主要考查二次根式的化简,解题的关键实数的性质.10、C【分析】连接DF,由题意易得四边形CDFE为矩形.由DF∥GH,可得.又AB∥CD,得出,设=a,DF=b(a,b为常数),可得出,从而可以得出,结合可将DH用含a,b的式子表示出来,最后得出结果.【详解】解:连接DF,已知CD=EF,CD⊥EG,EF⊥EG,∴四边形CDFE为矩形.∴DF∥GH,∴又AB∥CD,∴.设=a,DF=b,∴,∴∴∴GH=,∵a,b的长是定值不变,∴当人从点走向点时两段影子之和不变.故选:C.【点睛】本题考查了相似三角形的应用:利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度.11、C【分析】设点M的坐标为(),将代入y=-x+b中求出C点坐标,同理求出D点坐标,再根据两点之间距离公式即可求解.【详解】解:设点M的坐标为(),将代入y=-x+b中,得到C点坐标为(),将代入y=-x+b中,得到D点坐标为(),∵直线y=-x+b分别与x轴,y轴相交于点A,B,∴A点坐标(0,b),B点坐标为(b,0),∴AD×BC=,故选:C.【点睛】本题考查的是一次函数及反比例函数的性质,先设出M点坐标,用M点的坐标表示出C、D两点的坐标是解答此题的关键.12、D【解析】试题分析:分别对A、B、C、D四个选项进行一一验证,令y=1,转化为一元二次方程,根据根的判别式来判断方程是否有根.A、令y=1,得x2=1,△=1-4×1×1=1,则函数图形与x轴没有两个交点,故A错误;B、令y=1,得x2+4=1,△=1-4×1×1=-4<1,则函数图形与x轴没有两个交点,故B错误;C、令y=1,得3x2-2x+5=1,△=4-4×3×5=-56<1,则函数图形与x轴没有两个交点,故C错误;D、令y=1,得3x2+5x-1=1,△=25-4×3×(-1)=37>1,则函数图形与x轴有两个交点,故D正确;故选D.考点:本题考查的是抛物线与x轴的交点点评:解答本题的关键是熟练掌握当二次函数与x轴有两个交点时,b2-4ac>1,与x轴有一个交点时,b2-4ac=1,与x轴没有交点时,b2-4ac<1.二、填空题(每题4分,共24分)13、.【解析】试题分析:由∠C=∠E=90°,∠BAC=∠DAE可得△ABC∽△ADE,根据相似三角形的对应边的比相等就可求出AD的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△ABC∽△ADE∴AC:AE=BC:DE∴DE=∴考点:1.相似三角形的判定与性质;2.勾股定理.14、4﹣6【分析】根据一元二次方程根与系数的关系即可得答案.【详解】设方程的两个根为x1、x2,∵a=1,b=-4,c=-6,∴x1+x2=-=4,x1·x2==-6,故答案为4,﹣6【点睛】本题考查一元二次方程根与系数的关系,若一元二次方程y=ax2+bx+c(a≠0)的两个根为x1、x2,那么,x1+x2=-,x1·x2=;熟练掌握韦达定理是解题关键.15、2.1.【分析】利用以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k得到位似比为,然后根据相似的性质计算AB的长.【详解】解:∵A(1.1,0),D(4.1,0),∴==,∵△ABC与△DEF位似,原点O是位似中心,∴==,∴AB=DE=×7.1=2.1.故答案为2.1.【点睛】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.16、.【解析】试题分析:根据扇形的面积公式求解.试题解析:.考点:扇形的面积公式.17、37.1【分析】根据垂径定理求得AD=30cm,然后根据勾股定理得出方程,解方程即可求得半径.【详解】如图,设点O为外圆的圆心,连接OA和OC,∵CD=11cm,AB=60cm,∵CD⊥AB,∴OC⊥AB,∴AD=AB=30cm,∴设半径为rcm,则OD=(r﹣11)cm,根据题意得:r2=(r﹣11)2+302,解得:r=37.1,∴这个摆件的外圆半径长为37.1cm,故答案为37.1.【点睛】本题考查了垂径定理的应用以及勾股定理的应用,作出辅助线构建直角三角形是解本题的关键.18、8【解析】试题分析:由题意可得,即可得到关于m的方程,解出即可.由题意得,解得考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x轴有两个公共点;当时,抛物线与x轴只有一个公共点;时,抛物线与x轴没有公共点.三、解答题(共78分)19、(1),;(2)P,.【解析】试题分析:(1)由点A在一次函数图象上,结合一次函数解析式可求出点A的坐标,再由点A的坐标利用待定系数法即可求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B坐标;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,连接PB.由点B、D的对称性结合点B的坐标找出点D的坐标,设直线AD的解析式为y=mx+n,结合点A、D的坐标利用待定系数法求出直线AD的解析式,令直线AD的解析式中y=0求出点P的坐标,再通过分割图形结合三角形的面积公式即可得出结论.试题解析:(1)把点A(1,a)代入一次函数y=-x+4,得:a=-1+4,解得:a=3,∴点A的坐标为(1,3).把点A(1,3)代入反比例函数y=,得:3=k,∴反比例函数的表达式y=,联立两个函数关系式成方程组得:,解得:,或,∴点B的坐标为(3,1).(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,连接PB,如图所示.∵点B、D关于x轴对称,点B的坐标为(3,1),∴点D的坐标为(3,-1).设直线AD的解析式为y=mx+n,把A,D两点代入得:,解得:,∴直线AD的解析式为y=-2x+1.令y=-2x+1中y=0,则-2x+1=0,解得:x=,∴点P的坐标为(,0).S△PAB=S△ABD-S△PBD=BD•(xB-xA)-BD•(xB-xP)=×[1-(-1)]×(3-1)-×[1-(-1)]×(3-)=.考点:1.反比例函数与一次函数的交点问题;2.待定系数法求一次函数解析式;3.轴对称-最短路线问题.20、,,.【分析】根据题意和题目中的数据,利用勾股定理,可以求得AB的长,根据锐角三角函数可以求得∠A的度数,进而求得∠B的度数,本题得以解决.【详解】∵,,,∴,.∴,.∴.答:,,.【点睛】本题考查解直角三角形,解答本题的关键是明确题意,利用勾股定理和数形结合的思想解答.21、m=﹣;另一个交点坐标(2,0)【分析】首先将点(﹣,0)的坐标代入抛物线的解析式中,即可求得m的值,再令抛物线中y=0,可得出关于x的一元二次方程,即可求得抛物线与x轴的另一交点的坐标.【详解】解:根据题意得,5﹣m﹣10=0,所以m=﹣;得抛物线的解析式为y=x2﹣x﹣10,∵x2﹣x﹣10=0,解得x1=﹣,x2=2,∴抛物线与x轴的另一个交点坐标(2,0).故答案为:m=﹣;另一个交点坐标(2,0).【点睛】本题考查了抛物线与轴的交点:从二次函数的交点式(a,b,c是常数,a≠0)中可直接得出抛物线与轴的交点坐标,.22、(1)y=-;y=-x-2;(2)6【分析】(1)先把点A(-4,2)代入,求得“m”的值得到反比例函数的解析式,再把点B(n,-4)代入所得的反比例函数的解析式中求得“n”的值,从而可得点B的坐标,最后把A、B的坐标代入中列方程组解得“k、b”的值即可得到一次函数的解析式;(2)设直线AB和x轴交于点C,先求出点C的坐标,再由S△AOB=S△AOC+S△BOC,即可计算出△AOB的面积;【详解】(1)把点A(-4,2)代入得:,解得:,∴反比例函数的解析式为:.把点B(n,-4)代入得:,解得:,∴点B的坐标为(2,-4).把点A、B的坐标代入得:,解得,∴一次函数的解析式是;(2)如图,设AB与x轴的交点为点C,在中由可得:,解得:.∴点C的坐标是(-2,0).∴OC=2,∴S△AOB=S△AOC+S△BOC=.23、(1)200;(2)1;(3)900.【解析】试题分析:(1)将“没有影响”的人数÷其占总人数百分比=总人数n即可;(2)用总人数减去“没有影响”和“影响不大”的人数可得“影响很低”的人数m;(3)将样本中“影响很大”的人数所占比例乘以该校总人数即可得.试题解析:(1)n=40÷20%=200(人).答:n的值为200;(2)m=200-40-60=1;(3)1800×=900(人).答:该校1800名学生中认为“影响很大”的学生人数约为900人.故答案为(2)1.考点:1.扇形统计图;2.用样本估计总体.24、证明见解析【解析】试题分析:由AD是中线以及CD2=BE·BA可得,从而可得△BED∽△BDA,根据相似三角形的性质问题得证.试题解析:∵AD是中线,∴BD=CD,又CD2=BE·BA,∴BD2=BE·BA,即,又∠B=∠B,∴△BED∽△BDA,∴,∴ED·AB=AD·BD.【点睛】本题考查了相似三角形的判定与性质,根据已知得到△BED∽△BDA是解决本题的关键.25、(1);(2)见解析.【分析】(1)根据直角三角形斜边的中线等于斜边的一半,可求得的长度,再根据勾股定理,可求得的长度.根据圆的直径对应的圆周角为直角,可知,根据等腰三角形的顶角平分线、底边上的中线、底边上的高重合,可求得的长.(2)根据三角形中位线平行于底边,可知,再根据,可知,则可知与相切.【详解】(1)连接、,,.为的斜边的中线,由于直角三角形斜边的中线等于斜边的一半,,,,为圆的直径.,即,由于等腰三角形的顶角平分线、底边上的中线、底边上的高重合,.(2)、为、的中点,由于三角形中位线平行于底边,,.,,即.又为半径与圆相切.【点睛】本题综合考查“直角三角形斜边中线等于斜边的一半”,“等腰三角形的顶角平分线、底边上的中线、底边上的高重合”,“三角形中位线平行于底边”等定律,以及圆的切线的判定定理.26、(1)y=x2+6x+5;(2)①S△PBC的最大值为;②存在,点P的坐标为P(﹣,﹣)或(0,5).【解析】(1)将点A、B坐标代入二次函数表达式,即可求出二次函数解析式;(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1,设点G(t,t+1),则点P(t,t2+6t+5),利用三角形面积公式求出最大
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《标准理解与实施》课件
- 《盾构施工测量培训》课件
- 《员工安全教育讲义》课件
- 《测序技术介绍》课件
- 单位管理制度集合大全职工管理篇
- 单位管理制度集粹选集员工管理篇十篇
- 单位管理制度汇编大全职工管理篇
- 单位管理制度合并汇编【职员管理篇】
- 《客服分析报告会》课件
- 单位管理制度分享合集【人力资源管理】十篇
- DZ/T 0462.1-2023 矿产资源“三率”指标要求 第1部分:煤(正式版)
- DLT 265-2012 变压器有载分接开关现场试验导则
- 手术室护理年终总结
- 职业生涯规划班会课教案设计
- 微观经济学(对外经济贸易大学)智慧树知到期末考试答案2024年
- (正式版)HGT 6277-2024 甲醇制烯烃(MTO)级甲醇
- 注射用更昔洛韦的临床疗效研究
- 2023年1月广东省自考00634广告策划试题及答案含解析
- 中国绿色建筑现状与未来展望
- 河南省洛阳市2023-2024学年高二上学期期末考试英语试题(解析版)
- 超声检查医疗纠纷的防范培训课件
评论
0/150
提交评论