2023-2024学年重庆市江津第二中学数学九上期末综合测试模拟试题含解析_第1页
2023-2024学年重庆市江津第二中学数学九上期末综合测试模拟试题含解析_第2页
2023-2024学年重庆市江津第二中学数学九上期末综合测试模拟试题含解析_第3页
2023-2024学年重庆市江津第二中学数学九上期末综合测试模拟试题含解析_第4页
2023-2024学年重庆市江津第二中学数学九上期末综合测试模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年重庆市江津第二中学数学九上期末综合测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若点A(﹣2,y1),B(﹣1,y2),C(4,y3)都在二次函数的图象上,则下列结论正确的是()A. B. C. D.2.如图,在中,点分别在边上,且为边延长线上一点,连接,则图中与相似的三角形有()个A. B. C. D.3.如图所示,将Rt△ABC绕其直角顶点C按顺时针方向旋转90°后得到Rt△DEC,连接AD,若∠B=65°,则∠ADE=()A.20° B.25° C.30° D.35°4.关于反比例函数,下列说法不正确的是()A.函数图象分别位于第一、第三象限B.当x>0时,y随x的增大而减小C.若点A(x1,y1),B(x2,y2)都在函数图象上,且x1<x2,则y1>y2D.函数图象经过点(1,2)5.若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3 B.y3<y2<y1 C.y2<y1<y3 D.y3<y1<y26.在直角梯形ABCD中,AD//BC,∠B=90º,E为AB上一点,且ED平分∠ADC,EC平分∠BCD,则下列结论:①DE⊥EC;②点E是AB的中点;③AD∙BC=BE∙DE;④CD=AD+BC.其中正确的有()A.①②③ B.②③④ C.①②④ D.①③④7.如图,在平面直角坐标系中,将绕点逆时针旋转后,点对应点的坐标为()A. B. C. D.8.下列各点在反比例函数y=-图象上的是()A.(3,2) B.(2,3) C.(-3,-2) D.(-,2)9.下列事件中,是必然事件的是()A.抛掷一枚硬币正面向上 B.从一副完整扑克牌中任抽一张,恰好抽到红桃C.今天太阳从西边升起 D.从4件红衣服和2件黑衣服中任抽3件有红衣服10.下列说法正确的是()A.购买江苏省体育彩票有“中奖”与“不中奖”两种情况,所以中奖的概率是B.国家级射击运动员射靶一次,正中靶心是必然事件C.如果在若干次试验中一个事件发生的频率是,那么这个事件发生的概率一定也是D.如果车间生产的零件不合格的概率为,那么平均每检查1000个零件会查到1个次品11.在Rt△ABC中,∠C=90°,AC=3,BC=4,那么cosB的值是(

)A. B. C. D.12.如图,在△ABC中,点D在BC上,DE∥AC,DF∥AB,下列四个判断中不正确的是()A.四边形AEDF是平行四边形B.若∠BAC=90°,则四边形AEDF是矩形C.若AD平分∠BAC,则四边形AEDF是矩形D.若AD⊥BC且AB=AC,则四边形AEDF是菱形二、填空题(每题4分,共24分)13.如图,在Rt△ABC中,∠C=90°,CA=CB=1.分别以A、B、C为圆心,以AC为半径画弧,三条弧与边AB所围成的阴影部分的面积是______.14.方程(x﹣3)(x+2)=0的根是_____.15.在平面直角坐标系中,直线y=x-2与x轴、y轴分别交于点B、C,半径为1的⊙P的圆心P从点A(4,m)出发以每秒个单位长度的速度沿射线AC的方向运动,设点P运动的时间为t秒,则当t=_____秒时,⊙P与坐标轴相切.16.如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为,再将所折得的图形沿EF折叠,使得点D和点A重合若,,则折痕EF的长为______.17.已知:,则的值是_______.18.为了解某校九年级学生每天的睡眠时间,随机调查了其中20名学生,将所得数据整理并制成如表,那么这些测试数据的中位数是______小时.睡眠时间(小时)6789学生人数8642三、解答题(共78分)19.(8分)△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B,(1)如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形.(2)如图(2),将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.(3)在图(2)中,若AB=AC=10,BC=12,当△DEF的面积等于△ABC的面积的时,求线段EF的长.20.(8分)如图,已知A,B(-1,2)是一次函数与反比例函数()图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.21.(8分)甲乙两人参加一个幸运挑战活动,活动规则是:一个布袋里装有3个只有颜色不同的球,其中2个红球,1个白球.甲从布袋中摸出一个球,记下颜色后放回,搅匀,乙再摸出一个球,若颜色相同,则挑战成功.(1)用列表法或树状图法,表示所有可能出现的结果.(2)求两人挑战成功的概率.22.(10分)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣1,0),且tan∠ACO=1.(1)求该反比例函数和一次函数的解析式;(1)求点B的坐标.23.(10分)如图,在直角△ABC中,∠C=90°,AB=5,作∠ABC的平分线交AC于点D,在AB上取点O,以点O为圆心经过B、D两点画圆分别与AB、BC相交于点E、F(异于点B).(1)求证:AC是⊙O的切线;(2)若点E恰好是AO的中点,求的长;(3)若CF的长为,①求⊙O的半径长;②点F关于BD轴对称后得到点F′,求△BFF′与△DEF′的面积之比.24.(10分)如图,点A.B.C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)求PD的长.25.(12分)某校为响应全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月进馆达到288人次,若进馆人次的月平均增长率相同.(1)求进馆人次的月平均增长率;(2)因条件限制,学校图书馆每月接纳能力不得超过500人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接待第四个月的进馆人次,并说明理由.26.某商场购进一种每件价格为90元的新商品,在商场试销时发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系.(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式,并求出售价定为多少时,每天获得的利润最大?最大利润是多少?

参考答案一、选择题(每题4分,共48分)1、D【分析】先利用顶点式得到抛物线对称轴为直线x=-1,再比较点A、B、C到直线x=-1的距离,然后根据二次函数的性质判断函数值的大小.【详解】解:二次函数的图象的对称轴为直线x=-1,a=-1<0,所以该函数开口向下,且到对称轴距离越远的点对应的函数值越小,A(﹣2,y1)距离直线x=-1的距离为1,B(﹣1,y2)距离直线x=-1的距离为0,C(4,y3)距离距离直线x=-1的距离为5.B点距离对称轴最近,C点距离对称轴最远,所以,故选:D.【点睛】本题考查了二次函数图象上点的坐标特征.熟练掌握二次函数的性质是解决本题的关键.2、D【分析】根据平行四边形和平行线的性质,得出对应的角相等,再结合相似三角形的性质即可得出答案.【详解】∵EF∥CD,ABCD是平行四边形∴EF∥CD∥AB∴∠GDP=∠GAB,∠GPD=∠GBA∴△GDP∽△GAB又EF∥AB∴∠GEQ=∠GAB,∠GQE=∠GBA∴△GEQ∽△GAB又∵ABCD为平行四边形∴AD∥BC∴∠GDP=∠BCP,∠CBP=∠G∴∠BCP=∠GAB又∠GPD=∠BPC∴∠GBA=∠BPC∴△GAB∽△BCP又∠BQF=∠GQE∴∠BQF=∠GBA∴△GAB∽△BFQ综上共有4个三角形与△GAB相似故答案选择D.【点睛】本题考查的是相似三角形的判定,需要熟练掌握相似三角形的判定方法,此外,还需要掌握平行四边形和平行线的相关知识.3、A【分析】根据旋转的性质可得AC=CD,∠CED=∠B,再判断出△ACD是等腰直角三角形,然后根据等腰直角三角形的性质求出∠CAD=45°,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】∵Rt△ABC绕其直角顶点C按顺时针方向旋转90°后得到Rt△DEC,∴AC=CD,∠CED=∠B=65°,∴△ACD是等腰直角三角形,∴∠CAD=45°,由三角形的外角性质得:.故选:A.【点睛】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.4、C【分析】根据反比例函数图象上点的坐标特征对D进行判断;根据反比例函数的性质对A、B、C进行判断.【详解】A.k=2>0,则双曲线的两支分别位于第一、第三象限,所以A选项的说法正确;B.当x>0时,y随着x的增大而减小,所以B选项的说法正确;C.若x1<0,x2>0,则y2>y1,所以C选项的说法错误;D.把x=1代入得y=2,则点(1,2)在的图象上,所以D选项的说法正确.故选C.【点睛】本题考查了反比例函数的性质:反比例函数(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.5、D【解析】分析:直接利用反比例函数的性质分析得出答案.详解:∵点(﹣1,y1),(﹣1,y1),(3,y3)在双曲线y=(k<0)上,∴(﹣1,y1),(﹣1,y1)分布在第二象限,(3,y3)在第四象限,每个象限内,y随x的增大而增大,∴y3<y1<y1.故选:D.点睛:此题主要考查了反比例函数的性质,正确掌握反比例函数增减性是解题关键.6、C【解析】如图(见解析),过点E作,根据平行线的性质、角平分线的性质、相似三角形的判定定理与性质逐个判断即可.【详解】如图,过点E作,即ED平分,EC平分,即,故①正确又ED平分,EC平分,点E是AB的中点,故②正确在和中,同理可证:,故④正确又,即在中,,故③错误综上,正确的有①②④故选:C.【点睛】本题考查了平行线的性质、角平分线的性质、相似三角形的判定定理与性质,通过作辅助线,构造垂线和两组全等的三角形是解题关键.7、D【分析】根据旋转变换只改变图形的位置不改变图形的形状和大小作出旋转后的图形,即可得出答案.【详解】如图,△ABC绕点A逆时针旋转90°后,B点对应点的坐标为(0,2),故答案选择D.【点睛】本题考查的是坐标与图形的变化——旋转,记住旋转只改变图形的位置不改变图形的形状和大小.8、D【分析】将各选项点的横坐标代入,求出函数值,判断是否等于纵坐标即可.【详解】解:A.将x=3代入y=-中,解得y=-2,故(3,2)不在反比例函数y=-图象上,故A不符合题意;B.将x=2代入y=-中,解得y=-3,故(2,3)不在反比例函数y=-图象上,故B不符合题意;C.将x=-3代入y=-中,解得y=2,故(-3,-2)不在反比例函数y=-图象上,故C不符合题意;D.将x=-代入y=-中,解得y=2,故(-,2)在反比例函数y=-图象上,故D符合题意;故选:D.【点睛】此题考查的是判断一个点是否在反比例函数图象上,解决此题的关键是将点的横坐标代入,求出函数值,判断是否等于纵坐标即可.9、D【分析】必然事件是指在一定条件下一定会发生的事件,根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、抛掷一枚硬币正面向上,是随机事件,故本选项错误;

B、从一副完整扑克牌中任抽一张,恰好抽到红桃,是随机事件.故本选项错误;

C、今天太阳从西边升起,是不可能事件,故本选项错误;

D、从4件红衣服和2件黑衣服中任抽3件有红衣服,是必然事件,故本选项正确.

故选:D.【点睛】本题考查了事件发生的可能性,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10、C【详解】解:A、购买江苏省体育彩票“中奖”的概率是中奖的张数与发行的总张数的比值,故本项错误;B、国家级射击运动员射靶一次,正中靶心是随机事件,故本项错误;C、如果在若干次试验中一个事件发生的频率是,那么这个事件发生的概率一定也是,正确;D、如果车间生产的零件不合格的概率为,那么平均每检查1000个零件不一定会查到1个次品,故本项错误,故选C.【点睛】本题考查概率的意义,随机事件.11、A【分析】画出图像,勾股定理求出AB的长,表示cosB即可解题.【详解】解:如下图,∵在Rt△ABC中,∠C=90°,AC=3,BC=4,∴AB=5(勾股定理),∴cosB==,故选A.【点睛】本题考查了三角函数的求值,属于简单题,熟悉余弦函数的表示是解题关键.12、C【解析】A选项,∵在△ABC中,点D在BC上,DE∥AC,DF∥AB,∴DE∥AF,DF∥AE,∴四边形AEDF是平行四边形;即A正确;B选项,∵四边形AEDF是平行四边形,∠BAC=90°,∴四边形AEDF是矩形;即B正确;C选项,因为添加条件“AD平分∠BAC”结合四边形AEDF是平行四边形只能证明四边形AEDF是菱形,而不能证明四边形AEDF是矩形;所以C错误;D选项,因为由添加的条件“AB=AC,AD⊥BC”可证明AD平分∠BAC,从而可通过证∠EAD=∠CAD=∠EDA证得AE=DE,结合四边形AEDF是平行四边形即可得到四边形AEDF是菱形,所以D正确.故选C.二、填空题(每题4分,共24分)13、1【分析】三条弧与边AB所围成的阴影部分的面积=三角形的面积-三个小扇形的面积.【详解】解:阴影部分的面积为:1×1÷1---=1-.故答案为1-.【点睛】本题主要考查了扇形的面积计算,关键是理解阴影部分的面积=三角形的面积-三个小扇形的面积.14、x=3或x=﹣1.【解析】由乘法法则知,(x﹣3)(x+1)=0,则x-3=0或x+1=0,解这两个一元一次方程可求出x的值.【详解】∵(x﹣3)(x+1)=0,∴x-3=0或x+1=0,∴x=3或x=﹣1.故答案为:x=3或x=﹣1.【点睛】本题考查了解一元二次方程因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了数学转化思想.15、1,3,5【分析】设⊙P与坐标轴的切点为D,根据一次函数图象上点的坐标特征可得出点A、B、C的坐标,即可求出AB、AC的长,可得△OBC是等腰直角三角形,分⊙P只与x轴相切、与x轴、y轴同时相切、只与y轴相切三种情况,根据切线的性质和等腰直角三角形的性质分别求出AP的长,即可得答案.【详解】设⊙P与坐标轴的切点为D,∵直线y=x-2与x轴、y轴分别交于点B、C,点A坐标为(4,m),∴x=0时,y=-2,y=0时,x=2,x=4时,y=2,∴A(4,2),B(2,0),C(0,-2),∴AB=2,AC=4,OB=OC=2,∴△OBC是等腰直角三角形,∠OBC=45°,①如图,当⊙P只与x轴相切时,∵点D为切点,⊙P的半径为1,∴PD⊥x轴,PD=1,∴△BDP是等腰直角三角形,∴BD=PD=1,∴BP=,∴AP=AB-BP=,∵点P的速度为个单位长度,∴t=1,②如图,⊙P与x轴、y轴同时相切时,同①得PB=,∴AP=AB+PB=3,∵点P的速度为个单位长度,∴t=3.③如图,⊙P只与y轴相切时,同①得PB=,∴AP=AC+PB=5,∵点P的速度为个单位长度,∴t=5.综上所述:t的值为1、3、5时,⊙P与坐标轴相切,故答案为:1,3,5【点睛】本题考查切线的性质及一次函数图象上点的坐标特征,一次函数图象上的点的坐标都适合该一次函数的解析式;圆的切线垂直于过切点的直径;熟练掌握切线的性质是解题关键.16、【分析】首先由折叠的性质与矩形的性质,证得是等腰三角形,则在中,利用勾股定理,借助于方程即可求得AN的长,又由≌,易得:,由三角函数的性质即可求得MF的长,又由中位线的性质求得EM的长,则问题得解【详解】如图,设与AD交于N,EF与AD交于M,根据折叠的性质可得:,,,四边形ABCD是矩形,,,,,,,设,则,在中,,,,即,,,,≌,,,,,,由折叠的性质可得:,,,,,故答案为.【点睛】本题考查了折叠的性质,全等三角形的判定与性质,三角函数的性质以及勾股定理等知识,综合性较强,有一定的难度,解题时要注意数形结合思想与方程思想的应用.17、【分析】根据已知等式设a=2k,b=3k,代入式子可求出答案.【详解】解:由,可设a=2k,b=3k,(k≠0),故:,故答案:.【点睛】此题主要考查比例的性质,a、b都用k表示是解题的关键.18、1【解析】根据中位数的定义进行求解即可.【详解】∵共有20名学生,把这些数从小到大排列,处于中间位置的是第10和11个数的平均数,∴这些测试数据的中位数是=1小时;故答案为:1.【点睛】本题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).三、解答题(共78分)19、(1)△ABD,△ACD,△DCE(2)△BDF∽△CED∽△DEF,证明见解析;(3)4.【分析】(1)根据等腰三角形的性质以及相似三角形的判定得出△ADE∽△ABD∽△ACD∽△DCE,同理可得:△ADE∽△ACD.△ADE∽△DCE.(2)利用已知首先求出∠BFD=∠CDE,即可得出△BDF∽△CED,再利用相似三角形的性质得出,从而得出△BDF∽△CED∽△DEF.(3)利用△DEF的面积等于△ABC的面积的,求出DH的长,从而利用S△DEF的值求出EF即可【详解】解:(1)图(1)中与△ADE相似的有△ABD,△ACD,△DCE.(2)△BDF∽△CED∽△DEF,证明如下:∵∠B+∠BDF+∠BFD=30°,∠EDF+∠BDF+∠CDE=30°,又∵∠EDF=∠B,∴∠BFD=∠CDE.∵AB=AC,∴∠B=∠C.∴△BDF∽△CED.∴.∵BD=CD,∴,即.又∵∠C=∠EDF,∴△CED∽△DEF.∴△BDF∽△CED∽△DEF.(3)连接AD,过D点作DG⊥EF,DH⊥BF,垂足分别为G,H.∵AB=AC,D是BC的中点,∴AD⊥BC,BD=BC=1.在Rt△ABD中,AD2=AB2﹣BD2,即AD2=102﹣3,∴AD=2.∴S△ABC=•BC•AD=×3×2=42,S△DEF=S△ABC=×42=3.又∵•AD•BD=•AB•DH,∴.∵△BDF∽△DEF,∴∠DFB=∠EFD.∵DH⊥BF,DG⊥EF,∴∠DHF=∠DGF.又∵DF=DF,∴△DHF≌△DGF(AAS).∴DH=DG=.∵S△DEF=·EF·DG=·EF·=3,∴EF=4.【点睛】本题考查了和相似有关的综合性题目,用到的知识点有三角形相似的判定和性质、等腰三角形的性质以及勾股定理的运用,灵活运用相似三角形的判定定理和性质定理是解题的关键,解答时,要仔细观察图形、选择合适的判定方法,注意数形结合思想的运用.20、(1)当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)一次函数的解析式为y=x+;m=﹣2;(3)P点坐标是(﹣,).【解析】试题分析:(1)根据一次函数图象在反比例函数图象上方的部分是不等式的解,观察图象,可得答案;(2)根据待定系数法,可得函数解析式以及m的值;(3)设P的坐标为(x,x+)如图,由A、B的坐标可知AC=,OC=4,BD=1,OD=2,易知△PCA的高为x+4,△PDB的高(2﹣x﹣),由△PCA和△PDB面积相等得,可得答案.试题解析:(1)由图象得一次函数图象在反比例函数图象上方时,﹣4<x<﹣1,所以当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)设一次函数的解析式为y=kx+b,y=kx+b的图象过点(﹣4,),(﹣1,2),则,解得一次函数的解析式为y=x+,反比例函数y=图象过点(﹣1,2),m=﹣1×2=﹣2;(3)连接PC、PD,如图,设P的坐标为(x,x+)如图,由A、B的坐标可知AC=,OC=4,BD=1,OD=2,易知△PCA的高为x+4,△PDB的高(2﹣x﹣),由△PCA和△PDB面积相等得××(x+4)=×|﹣1|×(2﹣x﹣),x=﹣,y=x+=,∴P点坐标是(﹣,).考点:反比例函数与一次函数的交点问题21、(1)见解析;(2).【分析】用列表法列举出所有等可能出现的结果,从中找出颜色相同的结果数,进而求出概率.【详解】解:(1)用列表法表示所有可能出现的结果如下:(2)共有9种等可能出现的结果,其中颜色相同的有5种,∴P(颜色相同)=,答:获胜的概率为.【点睛】考查列表法或树状图法求等可能事件发生的概率,使用此方法一定注意每一种结果出现的可能性是均等的,即为等可能事件.22、(1)反比例函数的解析式为,一次函数的解析式为y=1x+4;(1)点B坐标为(﹣2,﹣1).【分析】(1)先过点A作AD⊥x轴,根据tan∠ACO=1,求得点A的坐标,进而根据待定系数法计算两个函数解析式;(1)先联立两个函数解析式,再通过解方程求得交点B的坐标即可.【详解】解:(1)过点A作AD⊥x轴,垂足为D.由A(n,6),C(﹣1,0)可得,OD=n,AD=6,CO=1∵tan∠ACO=1,∴=1,即,∴n=1,∴A(1,6).将A(1,6)代入反比例函数,得m=1×6=6,∴反比例函数的解析式为.将A(1,6),C(﹣1,0)代入一次函数y=kx+b,可得:,解得:,∴一次函数的解析式为y=1x+4;(1)由可得,,解得=1,=﹣2.∵当x=﹣2时,y=﹣1,∴点B坐标为(﹣2,﹣1).【点睛】本题考查反比例函数与一次函数的交点问题,利用数形结合思想解题是关键.23、(1)见解析;(2);(3)①r1=1,;②△BFF'与△DEF'的面积比为或【分析】(1)连结,证明,得出,则结论得证;(2)求出,,连结,则,由弧长公式可得出答案;(3)①如图3,过作于,则,四边形是矩形,设圆的半径为,则.,证明,由比例线段可得出的方程,解方程即可得出答案;②证明,当或时,根据相似三角形的性质可得出答案.【详解】解:(1)连结DO,∵BD平分∠ABC,∴∠CBD=∠ABD,∵DO=BO,∴∠ODB=∠OBD,∴∠CBD=∠ODB.∴DO∥BC,∵∠C=90°,∴∠ADO=90°,∴AC是⊙O的切线;(2)∵E是AO中点,∴AE=EO=DO=BO=,∴sin∠A=,∴∠A=30°,∠B=60°,连结FO,则∠BOF=60°,∴=.(3)①如图3,连结OD,过O作OM⊥BC于M,则BM=FM,四边形CDOM是矩形设圆的半径为r,则OA=5﹣r.BM=FM=r﹣,∵DO∥BC,∴∠AOD=∠OBM,而∠ADO=90°=∠OMB,∴△ADO∽△OMB,∴,即,解之得r1=1,.②∵在(1)中∠CBD=∠ABD,∴DE=DF,∵BE是⊙O的直径,∴∠BDE=90°,而F、F'关于BD轴对称,∴BD⊥FF',BF=BF',∴DE∥FF',∴∠DEF'=∠BF'F,∴△DEF'∽∠BFF',当r=1时,AO=4,DO=1,BO=1,由①知,,,,,,,与的面积之比,同理可得,当时.时,与的面积比.与的面积比为或.【点睛】本题是圆的综合题,考查了直角三角形30度角的性质,切线的判定和性质,等腰三角形的判定,圆周角定理,勾股定理,轴对称的性质,相似三角形的判定和性质等知识,正确作出辅

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论