版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年天津市津南区名校数学九年级第一学期期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.抛物线的顶点为,与轴交于点,则该抛物线的解析式为()A. B.C. D.2.如图,已知AB∥CD∥EF,AC=4,CE=1,BD=3,则DF的值为()A. B. C. D.13.下列四幅图案,在设计中用到了中心对称的图形是()A. B. C. D.4.如图,▱ABCD的对角线AC,BD交于点O,已知,,,则的周长为A.13 B.17 C.20 D.265.如图,△ABC是一块锐角三角形材料,高线AH长8cm,底边BC长10cm,要把它加工成一个矩形零件,使矩形DEFG的一边EF在BC上,其余两个顶点D,G分别在AB,AC上,则四边形DEFG的最大面积为()A.40cm2 B.20cm2C.25cm2 D.10cm26.二次函数y=a(x﹣m)2﹣n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限7.若关于x的分式方程有增根,则m为()A.-1 B.1 C.2 D.-1或28.下列图形中,既是轴对称图形又是中心对称图形的有()A.1个 B.2个 C.3个 D.4个9.分别以等边三角形的三个顶点为圆心,以边长为半径画弧,得到封闭图形就是莱洛三角形,如图,已知等边,,则该莱洛三角形的面积为()A. B. C. D.10.在一个不透明的袋子中,装有红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.若小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在.和,则该袋子中的白色球可能有()A.6个 B.16个 C.18个 D.24个11.一元二次方程x2﹣3x+5=0的根的情况是()A.没有实数根 B.有两个相等的实数根C.只有一个实数根 D.有两个不相等的实数根12.某商场举行投资促销活动,对于“抽到一等奖的概率为”,下列说法正确的是()A.抽一次不可能抽到一等奖B.抽次也可能没有抽到一等奖C.抽次奖必有一次抽到一等奖D.抽了次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖二、填空题(每题4分,共24分)13.如图,在平行四边形ABCD中,AE:BE=2:1,F是AD的中点,射线EF与AC交于点G,与CD的延长线交于点P,则的值为_____.14.如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=.15.已知,则的值为___________.16.小明和小亮在玩“石头、剪子、布”的游戏,两人一起做同样手势的概率是_____________.17.在、、、1、2五个数中,若随机取一个数作为反比例函数中的值,则该函数图象在第二、第四象限的概率是__________.18.已知反比例函数的图象经过点,则这个反比例函数的解析式是__________.三、解答题(共78分)19.(8分)如图1,AB为⊙O的直径,点C为⊙O上一点,CD平分∠ACB交⊙O于点D,交AB于点E.(1)求证:△ABD为等腰直角三角形;(2)如图2,ED绕点D顺时针旋转90°,得到DE′,连接BE′,证明:BE′为⊙O的切线;(3)如图3,点F为弧BD的中点,连接AF,交BD于点G,若DF=1,求AG的长.20.(8分)探究题:如图1,和均为等边三角形,点在边上,连接.(1)请你解答以下问题:①求的度数;②写出线段,,之间数量关系,并说明理由.(2)拓展探究:如图2,和均为等腰直角三角形,,点在边上,连接.请判断的度数及线段,,之间的数量关系,并说明理由.(3)解决问题:如图3,在四边形中,,,,与交于点.若恰好平分,请直接写出线段的长度.21.(8分)已知:二次函数、图像的顶点分别为A、B(其中m、a为实数),点C的坐标为(0,).(1)试判断函数的图像是否经过点C,并说明理由;(2)若m为任意实数时,函数的图像始终经过点C,求a的值;(3)在(2)的条件下,存在不唯一的x值,当x增大时,函数的值减小且函数的值增大.①直接写出m的范围;②点P为x轴上异于原点O的任意一点,过点P作y轴的平行线,与函数、的图像分别相交于点D、E.试说明的值只与点P的位置有关.22.(10分)(1)计算:|﹣2|+(π﹣3)1+2sin61°.(2)解下列方程:x2﹣3x﹣1=1.23.(10分)如图,在O中,弦BC垂直于半径OA,垂足为E,D是优弧BC上一点,连接BD,AD,OC,∠ADB=30°.(1)求∠AOC的度数.(2)若弦BC=8cm,求图中劣弧BC的长.24.(10分)如图,点在轴正半轴上,点是反比例函数图象上的一点,且.过点作轴交反比例函数图象于点.(1)求反比例函数的表达式;(2)求点的坐标.25.(12分)已知二次函数.用配方法将其化为的形式;在所给的平面直角坐标系xOy中,画出它的图象.26.在中,,,,点从出发沿方向在运动速度为3个单位/秒,点从出发向点运动,速度为1个单位/秒,、同时出发,点到点时两点同时停止运动.(1)点在线段上运动,过作交边于,时,求的值;(2)运动秒后,,求此时的值;(3)________时,.
参考答案一、选择题(每题4分,共48分)1、A【分析】设出抛物线顶点式,然后将点代入求解即可.【详解】解:设抛物线解析式为,将点代入得:,解得:a=1,故该抛物线的解析式为:,故选:A.【点睛】本题考查了待定系数法求二次函数的解析式:一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.2、C【分析】根据平行线分线段成比例定理即可得出结论.【详解】解:∵直线AB∥CD∥EF,AC=4,CE=1,BD=3,∴即,解得DF=.
故选:C.【点睛】本题考查的是平行线分线段成比例定理,熟知三条平行线截两条直线,所得的对应线段成比例是解答此题的关键.3、D【解析】由题意根据中心对称图形的性质即图形旋转180°与原图形能够完全重合的图形是中心对称图形,依次对选项进行判断即可.【详解】解:A.旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误;B.旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误;C.旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误;D.旋转180°,能与原图形能够完全重合是中心对称图形;故此选项正确;故选:D.【点睛】本题主要考查中心对称图形的性质,根据中心对称图形的定义判断图形是解决问题的关键.4、B【分析】由平行四边形的性质得出,,,即可求出的周长.【详解】四边形ABCD是平行四边形,,,,的周长.故选B.【点睛】本题主要考查了平行四边形的性质,并利用性质解题平行四边形基本性质:平行四边形两组对边分别平行;平行四边形的两组对边分别相等;平行四边形的两组对角分别相等;平行四边形的对角线互相平分.5、B【解析】设矩形DEFG的宽DE=x,根据相似三角形对应高的比等于相似比列式求出DG,再根据矩形的面积列式整理,然后根据二次函数的最值问题解答即可.【详解】如图所示:设矩形DEFG的宽DE=x,则AM=AH-HM=8-x,
∵矩形的对边DG∥EF,
∴△ADG∽△ABC,∴,即,解得DG=(8-x),
四边形DEFG的面积=(8-x)x=-(x1-8x+16)+10=-(x-4)1+10,
所以,当x=4,即DE=4时,四边形DEFG最大面积为10cm1.
故选B.【点睛】考查了相似三角形的应用,二次函数的最值问题,根据相似三角形的对应高的比等于相似比用矩形DEFG的宽表示出长是解题的关键.6、A【解析】由抛物线的顶点坐标在第四象限可得出m>0,n>0,再利用一次函数图象与系数的关系,即可得出一次函数y=mx+n的图象经过第一、二、三象限.【详解】解:观察函数图象,可知:m>0,n>0,∴一次函数y=mx+n的图象经过第一、二、三象限.故选A.【点睛】本题考查了二次函数的图象以及一次函数图象与系数的关系,牢记“k>0,b>0⇔y=kx+b的图象在一、二、三象限”是解题的关键.7、A【分析】增根就是分母为零的x值,所以对分式方程去分母,得m=x-3,将增根x=2代入即可解得m值.【详解】对分式方程去分母,得:1=﹣m+2-x,∴m=x-3,∵方程有增根,∴x-2=0,解得:x=2,将x=2代入m=x-3中,得:m=2-3=﹣1,故选:A.【点睛】本题考查分式方程的解,解答的关键是理解分式方程有增根的原因.8、B【解析】解:第一个图是轴对称图形,又是中心对称图形;第二个图是轴对称图形,不是中心对称图形;第三个图是轴对称图形,又是中心对称图形;第四个图是轴对称图形,不是中心对称图形;既是轴对称图形,又是中心对称图形的有2个.故选B.9、D【分析】莱洛三角形的面积为三个扇形的面积相加,再减去两个等边三角形的面积,代入已知数据计算即可.【详解】解:如图所示,作AD⊥BC交BC于点D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°∵AD⊥BC,∴BD=CD=1,AD=,∴,∴莱洛三角形的面积为故答案为D.【点睛】本题考查了不规则图形的面积的求解,能够得出“莱洛三角形的面积为三个扇形的面积相加,再减去两个等边三角形的面积”是解题的关键.10、B【分析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数,即可求出答案.【详解】解:∵摸到红色球、黑色球的频率稳定在0.15和0.45,
∴摸到白球的频率为1-0.15-0.45=0.4,
故口袋中白色球的个数可能是40×0.4=16个.
故选:B.【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.11、A【解析】Δ=b2-4ac=(-3)2-4×1×5=9-20=-11<0,所以原方程没有实数根,故选A.12、B【解析】根据大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果,可得答案.【详解】A.“抽到一等奖的概率为”,抽一次也可能抽到一等奖,故错误;B.“抽到一等奖的概率为”,抽10次也可能抽不到一等奖,故正确;C.“抽到一等奖的概率为”,抽10次也可能抽不到一等奖,故错误;D.“抽到一等奖的概率为”,抽第10次的结果跟前面的结果没有关系,再抽一次也不一定抽到一等奖,故错误;故选B.【点睛】关键是理解概率是反映事件的可能性大小的量.概率小的有可能发生,概率大的有可能不发生.概率等于所求情况数与总情况数之比.二、填空题(每题4分,共24分)13、【分析】设则,根据是平行四边形,可得,即,和,可得,由于是的中点,可得,因此,,,再通过便可得出.【详解】解:∵∴设,,则∵是平行四边形∴,∴,,∴∴又∵是的中点∴∴∴∴∴故答案为:【点睛】本题主要考查了平行四边形的性质,全等三角形的判定和性质,相似三角形的判定和性质,求证两个三角形相似,再通过比值等量代换表示出边的数量关系是解题的关键.14、1.【分析】延长BQ交射线EF于M,根据三角形的中位线平行于第三边可得EF∥BC,根据两直线平行,内错角相等可得∠M=∠CBM,再根据角平分线的定义可得∠PBM=∠CBM,从而得到∠M=∠PBM,根据等角对等边可得BP=PM,求出EP+BP=EM,再根据CQ=CE求出EQ=2CQ,然后根据△MEQ和△BCQ相似,利用相似三角形对应边成比例列式求解即可.【详解】如图,延长BQ交射线EF于M,∵E、F分别是AB、AC的中点,∴EF∥BC.∴∠M=∠CBM.∵BQ是∠CBP的平分线,∴∠PBM=∠CBM.∴∠M=∠PBM.∴BP=PM.∴EP+BP=EP+PM=EM.∵CQ=CE,∴EQ=2CQ.由EF∥BC得,△MEQ∽△BCQ,∴.∴EM=2BC=2×6=1,即EP+BP=1.故答案为:1.【点睛】本题考查了相似三角形的判定与性质,角平分线的定义,平行线的性质,延长BQ构造出相似三角形,求出EP+BP=EM并得到相似三角形是解题的关键,也是本题的难点.15、【分析】设,分别表示出a,b,c,即可求出的值.【详解】设∴∴故答案为【点睛】本题考查了比例的性质,利用参数分别把a,b,c表示出来是解题的关键.16、【分析】画树状图展示所有9种等可能的结果数,再找出两人随机同时出手一次,做同样手势的结果数,然后根据概率公式求解.【详解】画树状图为:
共有9种等可能的结果数,其中两人随机同时出手一次,做同样手势的结果数为3,
故两人一起做同样手势的概率是的概率为.故答案为:.【点睛】本题涉及列表法和树状图法以及相关概率知识,用到的知识点为:概率=所求情况数与总情况数之比.17、【分析】根据反比例函数的图象在第二、第四象限得出,最后利用概率公式进行求解.【详解】∵反比例函数的图象在第二、第四象限,∴,∴该函数图象在第二、第四象限的概率是,故答案为:.【点睛】本题考查了反比例函数的图象,等可能情况下的概率计算公式,熟练掌握反比例函数图象的特征与概率公式是解题的关键.18、【分析】把点,代入求解即可.【详解】解:由于反比例函数的图象经过点,∴把点,代入中,解得k=6,所以函数解析式为:故答案为:【点睛】本题考查待定系数法解函数解析式,掌握待定系数法的解题步骤正确计算是关键.三、解答题(共78分)19、(1)见解析;(1)见解析;(3)1.【分析】(1)由AB是⊙O的直径,根据直径所对的圆周角是直角,即可得∠ADB=90°,又由CD平分∠ACB,根据圆周角定理,可得AD=BD,继而可得△ABD是等腰直角三角形;
(1)证明△ADE≌△BDE',可得∠DAE=∠DBE',则∠OBE'=∠ABD+∠DBE'=90°,结论得证;
(3)取AG的中点H,连结DH,则DH=AH=GH,求出DH=DF=1,则答案可求出.【详解】(1)∵AB是⊙O的直径,∴∠ADB=∠ACB=90°,∵CD平分∠ACB,∴∠ACD=∠DCB,∴,∴AD=BD,∴△ABD是等腰直角三角形.(1)由旋转的性质得,∠EDE'=90°,DE=DE',∵∠ADB=90°,∴∠ADE=∠BDE',∵AD=BD,∴△ADE≌△BDE'(SAS),∴∠DAE=∠DBE',∵∠EAD=∠DCB=45°,∠ABD=∠DCA=45°,∴∠OBE'=∠ABD+∠DBE'=90°,∴BE′为⊙O的切线;(3)解:∵点F为的中点,∴∠FAD=∠DAB=11.5°,取AG的中点H,连结DH,∵∠ADB=90°,∴DH=AH=GH,∴∠ADH=∠FAD=11.5°,∴∠DHF=∠ADH+∠FAD=45°,∵∠AFD=∠ACD=45°,∴∠DHF=∠AFD,∴DH=DF=1,∴AG=1DH=1.【点睛】此题考查了和圆有关的综合性题目,考查了等腰直角三角形的判定与性质、旋转的性质、切线的判定、全等三角形的判定与性质以及直角三角形的性质,熟练掌握切线的判定方法是解题的关键.20、(1)①;②线段、、之间的数量关系为:,理由见解析;(2),,理由见解析.(3)理由见解析.【分析】(1)①证明△BAD≌△CAE(SAS),可得结论:∠ACE=∠B=60°;②由△BAD≌△CAE,得BD=CE,利用等边三角形的AC=BC=BD+DC等量代换可得结论;(2)如图2,先证明△ABD≌△ACE,得BD=CE,∠ACE=∠B=45°,同理可得结论;(3)如图3,作辅助线,构建如图2的两个等腰直角三角形,已经有一个△ABD,再证明△ACF也是等腰直角三角形,则利用(2)的结论求AC的长.【详解】(1)①∵和均为等边三角形,∴,,,∴,即,∴,∴,②线段、、之间的数量关系为:;理由是:由①得:,∴,∵,∴;(2),,理由是:如图2,∵和均为等腰直角三角形,且,∴,,,即,∴,∴,,∵,∴,∵在等腰直角三角形中,,∴;(3)如图3,过作的垂线,交的延长线于点,∵,,,∴,,∵,∴以BD的中点为圆心,为半径作圆,则A,C在此圆上,∴、、、四点共圆,∵恰好平分∴,∴是等腰直角三角形,由(2)得:,∴.【点睛】本题是四边形的综合题,考查了等边三角形的性质、等腰直角三角形的性质、三角形全等的性质和判定、四点共圆的判定,圆周角定理,本题还运用了类比的思想,从问题发现到解决问题,第三问有难度,作辅助线,构建等腰直角三角形ACF是关键.21、(1)函数y1的图像经过点C,见解析;(2);(3)①;②见解析【分析】(1)取x=0时,计算得,说明函数的图像经过点C;(2)将点C(0,)代入得,求得a的值;(3)①只要的对称轴始终在的对称轴右侧,就满足题目的要求,得出m的范围;②设点P的坐标为(,0),求得DE=,利用勾股定理求得AB=,即可说明结论.【详解】(1)函数的图像经过点C.理由如下:当x=0时,==,∴函数的图像经过点C.(2)将点C(0,)代入得:,∴,∵m为任意实数时,函数的图像始终经过点C,∴的成立与m无关,∴,∴;(3)①的对称轴为:,的对称轴为:,∵,∴两函数的图像开口向下,当时,x增大时,函数的值减小且函数的值增大.∴;②设点P的坐标为(,0),则=,=,∴DE===由①可知:,∴DE=;过A点作x轴的平行线,过B点作y轴的平行线,两平行线相交点F,则点F的坐标为(,),∴AF==,BF==,∴AB==,∴==,故的值只与点P的位置有关.【点睛】本题考查了二次函数的图象与系数之间的关系,抛物线的顶点坐标公式、对称轴方程、勾股定理,构造直角三角形ABF求得AB的长是解题的关键.22、(1)3;(2)【分析】(1)由题意先计算绝对值、零指数幂,代入三角函数值,再进一步计算可得;(2)根据题意直接利用公式法进行求解即可.【详解】解:(1)|﹣2|+(π﹣3)1+2sin61°=2﹣+1+2×=2﹣+1+=3;(2)∵a=1,b=﹣3,c=﹣1,∴△=(﹣3)2﹣4×1×(﹣1)=13>1,则x=,即x1=,x2=.【点睛】本题主要考查含三角函数值的实数运算以及解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.23、(1)60°;(2)【分析】(1)先根据垂径定理得出BE=CE,,再根据圆周角定理即可得出∠AOC的度数;(2)连接OB,先根据勾股定理得出OE的长,由弦BC=8cm,可得半径的长,继而求劣弧的长;【详解】解:(1)连接OB,∵BC⊥OA,∴BE=CE,,又∵∠ADB=30°,∴∠AOC=∠AOB=2∠ADB,∴∠AOC=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 施工现场质量巡查内容
- 放学后观后感300字
- 实验中学九年级上学期第一次月考语文试题(含答案)-4
- 网络学习空间对小学生传承红色基因的影响及教育策略
- 2024年度加工承揽合同:甲方委托乙方加工制作000件服装产品2篇
- 2024年广告宣传代理合同3篇
- 2024年度物业服务公司水质监测合同2篇
- 2024年度网络游戏运营中介合同3篇
- 《土木工程材料材料》课件
- 2024年度钢混隔层施工进度与付款方式协议2篇
- 2024年海南省中考数学试卷含解析
- 工程绿色施工管理实施规划方案(中建集团)
- 北京版四年级上册数学计算题专项练习1000道带答案
- 人教版一年级上册《劳动教育》-全册课件
- 健身器材采购合同
- 移动厕所投标方案(技术方案)
- 2024-2030年中国聚醚醚酮树脂行业市场发展趋势与前景展望战略分析报告
- 农村修墓承包合同模板范本
- GA/T 2133.1-2024便携式微型计算机移动警务终端第1部分:技术要求
- 2024中国人民保险集团校园招聘【重点基础提升】模拟试题(共500题)附带答案详解
- 办公楼室内装饰工程施工设计方案技术标范本
评论
0/150
提交评论