![2024届重庆市第二外国语学校高三下学期返校联考数学试题_第1页](http://file4.renrendoc.com/view11/M03/28/3E/wKhkGWWUQFSAFgxcAAIWp3AQM0o658.jpg)
![2024届重庆市第二外国语学校高三下学期返校联考数学试题_第2页](http://file4.renrendoc.com/view11/M03/28/3E/wKhkGWWUQFSAFgxcAAIWp3AQM0o6582.jpg)
![2024届重庆市第二外国语学校高三下学期返校联考数学试题_第3页](http://file4.renrendoc.com/view11/M03/28/3E/wKhkGWWUQFSAFgxcAAIWp3AQM0o6583.jpg)
![2024届重庆市第二外国语学校高三下学期返校联考数学试题_第4页](http://file4.renrendoc.com/view11/M03/28/3E/wKhkGWWUQFSAFgxcAAIWp3AQM0o6584.jpg)
![2024届重庆市第二外国语学校高三下学期返校联考数学试题_第5页](http://file4.renrendoc.com/view11/M03/28/3E/wKhkGWWUQFSAFgxcAAIWp3AQM0o6585.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届重庆市第二外国语学校高三下学期返校联考数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.由曲线y=x2与曲线y2=x所围成的平面图形的面积为()A.1 B. C. D.2.已知正方体的棱长为,,,分别是棱,,的中点,给出下列四个命题:①;②直线与直线所成角为;③过,,三点的平面截该正方体所得的截面为六边形;④三棱锥的体积为.其中,正确命题的个数为()A. B. C. D.3.已知函数,,若对任意,总存在,使得成立,则实数的取值范围为()A. B.C. D.4.已知,则()A.2 B. C. D.35.对两个变量进行回归分析,给出如下一组样本数据:,,,,下列函数模型中拟合较好的是()A. B. C. D.6.命题“”的否定是()A. B.C. D.7.已知向量,,若,则与夹角的余弦值为()A. B. C. D.8.若,则函数在区间内单调递增的概率是()A.B.C.D.9.若满足,且目标函数的最大值为2,则的最小值为()A.8 B.4 C. D.610.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重比为58.79kg11.已知函数,若函数在上有3个零点,则实数的取值范围为()A. B. C. D.12.已知椭圆的左、右焦点分别为、,过的直线交椭圆于A,B两点,交y轴于点M,若、M是线段AB的三等分点,则椭圆的离心率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的左焦点为,、为双曲线上关于原点对称的两点,的中点为,的中点为,的中点为,若,且直线的斜率为,则__________,双曲线的离心率为__________.14.如图,在△ABC中,AB=4,D是AB的中点,E在边AC上,AE=2EC,CD与BE交于点O,若OB=OC,则△ABC面积的最大值为_______.15.在中,,是的角平分线,设,则实数的取值范围是__________.16.过直线上一动点向圆引两条切线MA,MB,切点为A,B,若,则四边形MACB的最小面积的概率为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数.(1)当时,求不等式的解集;(2)若存在,使得不等式对一切恒成立,求实数的取值范围.18.(12分)如图,已知抛物线:与圆:()相交于,,,四个点,(1)求的取值范围;(2)设四边形的面积为,当最大时,求直线与直线的交点的坐标.19.(12分)己知函数.(1)当时,求证:;(2)若函数,求证:函数存在极小值.20.(12分)已知奇函数的定义域为,且当时,.(1)求函数的解析式;(2)记函数,若函数有3个零点,求实数的取值范围.21.(12分)已知数列和满足:.(1)求证:数列为等比数列;(2)求数列的前项和.22.(10分)已知数列满足对任意都有,其前项和为,且是与的等比中项,.(1)求数列的通项公式;(2)已知数列满足,,设数列的前项和为,求大于的最小的正整数的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
首先求得两曲线的交点坐标,据此可确定积分区间,然后利用定积分的几何意义求解面积值即可.【题目详解】联立方程:可得:,,结合定积分的几何意义可知曲线y=x2与曲线y2=x所围成的平面图形的面积为:.本题选择B选项.【题目点拨】本题主要考查定积分的概念与计算,属于中等题.2、C【解题分析】
画出几何体的图形,然后转化判断四个命题的真假即可.【题目详解】如图;连接相关点的线段,为的中点,连接,因为是中点,可知,,可知平面,即可证明,所以①正确;直线与直线所成角就是直线与直线所成角为;正确;过,,三点的平面截该正方体所得的截面为五边形;如图:是五边形.所以③不正确;如图:三棱锥的体积为:由条件易知F是GM中点,所以,而,.所以三棱锥的体积为,④正确;故选:.【题目点拨】本题考查命题的真假的判断与应用,涉及空间几何体的体积,直线与平面的位置关系的应用,平面的基本性质,是中档题.3、C【解题分析】
将函数解析式化简,并求得,根据当时可得的值域;由函数在上单调递减可得的值域,结合存在性成立问题满足的集合关系,即可求得的取值范围.【题目详解】依题意,则,当时,,故函数在上单调递增,当时,;而函数在上单调递减,故,则只需,故,解得,故实数的取值范围为.故选:C.【题目点拨】本题考查了导数在判断函数单调性中的应用,恒成立与存在性成立问题的综合应用,属于中档题.4、A【解题分析】
利用分段函数的性质逐步求解即可得答案.【题目详解】,;;故选:.【题目点拨】本题考查了函数值的求法,考查对数的运算和对数函数的性质,是基础题,解题时注意函数性质的合理应用.5、D【解题分析】
作出四个函数的图象及给出的四个点,观察这四个点在靠近哪个曲线.【题目详解】如图,作出A,B,C,D中四个函数图象,同时描出题中的四个点,它们在曲线的两侧,与其他三个曲线都离得很远,因此D是正确选项,故选:D.【题目点拨】本题考查回归分析,拟合曲线包含或靠近样本数据的点越多,说明拟合效果好.6、D【解题分析】
根据全称命题的否定是特称命题,对命题进行改写即可.【题目详解】全称命题的否定是特称命题,所以命题“,”的否定是:,.故选D.【题目点拨】本题考查全称命题的否定,难度容易.7、B【解题分析】
直接利用向量的坐标运算得到向量的坐标,利用求得参数m,再用计算即可.【题目详解】依题意,,而,即,解得,则.故选:B.【题目点拨】本题考查向量的坐标运算、向量数量积的应用,考查运算求解能力以及化归与转化思想.8、B【解题分析】函数在区间内单调递增,,在恒成立,在恒成立,,函数在区间内单调递增的概率是,故选B.9、A【解题分析】
作出可行域,由,可得.当直线过可行域内的点时,最大,可得.再由基本不等式可求的最小值.【题目详解】作出可行域,如图所示由,可得.平移直线,当直线过可行域内的点时,最大,即最大,最大值为2.解方程组,得..,当且仅当,即时,等号成立.的最小值为8.故选:.【题目点拨】本题考查简单的线性规划,考查基本不等式,属于中档题.10、D【解题分析】根据y与x的线性回归方程为y=0.85x﹣85.71,则=0.85>0,y与x具有正的线性相关关系,A正确;回归直线过样本点的中心(),B正确;该大学某女生身高增加1cm,预测其体重约增加0.85kg,C正确;该大学某女生身高为170cm,预测其体重约为0.85×170﹣85.71=58.79kg,D错误.故选D.11、B【解题分析】
根据分段函数,分当,,将问题转化为的零点问题,用数形结合的方法研究.【题目详解】当时,,令,在是增函数,时,有一个零点,当时,,令当时,,在上单调递增,当时,,在上单调递减,所以当时,取得最大值,因为在上有3个零点,所以当时,有2个零点,如图所示:所以实数的取值范围为综上可得实数的取值范围为,故选:B【题目点拨】本题主要考查了函数的零点问题,还考查了数形结合的思想和转化问题的能力,属于中档题.12、D【解题分析】
根据题意,求得的坐标,根据点在椭圆上,点的坐标满足椭圆方程,即可求得结果.【题目详解】由已知可知,点为中点,为中点,故可得,故可得;代入椭圆方程可得,解得,不妨取,故可得点的坐标为,则,易知点坐标,将点坐标代入椭圆方程得,所以离心率为,故选:D.【题目点拨】本题考查椭圆离心率的求解,难点在于根据题意求得点的坐标,属中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
设,,根据中点坐标公式可得坐标,利用可得到点坐标所满足的方程,结合直线斜率可求得,进而求得;将点坐标代入双曲线方程,结合焦点坐标可求得,进而得到离心率.【题目详解】左焦点为,双曲线的半焦距.设,,,,,,即,,即,又直线斜率为,即,,,,在双曲线上,,即,结合可解得:,,离心率.故答案为:;.【题目点拨】本题考查直线与双曲线的综合应用问题,涉及到直线截双曲线所得线段长度的求解、双曲线离心率的求解问题;关键是能够通过设点的方式,结合直线斜率、垂直关系、点在双曲线上来构造方程组求得所需变量的值.14、【解题分析】
先根据点共线得到,从而得到O的轨迹为阿氏圆,结合三角形和三角形的面积关系可求.【题目详解】设B,O,E共线,则,解得,从而O为CD中点,故.在△BOD中,BD=2,,易知O的轨迹为阿氏圆,其半径,故.故答案为:.【题目点拨】本题主要考查三角形的面积问题,把所求面积进行转化是求解的关键,侧重考查数学运算的核心素养.15、【解题分析】
设,,,由,用面积公式表示面积可得到,利用,即得解.【题目详解】设,,,由得:,化简得,由于,故.故答案为:【题目点拨】本题考查了解三角形综合,考查了学生转化划归,综合分析,数学运算能力,属于中档题.16、.【解题分析】
先求圆的半径,四边形的最小面积,转化为的最小值为,求出切线长的最小值,再求的距离也就是圆心到直线的距离,可解得的取值范围,利用几何概型即可求得概率.【题目详解】由圆的方程得,所以圆心为,半径为,四边形的面积,若四边形的最小面积,所以的最小值为,而,即的最小值,此时最小为圆心到直线的距离,此时,因为,所以,所以的概率为.【题目点拨】本题考查直线与圆的位置关系,及与长度有关的几何概型,考查了学生分析问题的能力,难度一般.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ).(Ⅱ).【解题分析】
(Ⅰ)时,根据绝对值不等式的定义去掉绝对值,求不等式的解集即可;(Ⅱ)不等式的解集为,等价于,求出在的最小值即可.【题目详解】(Ⅰ)当时,时,不等式化为,解得,即时,不等式化为,不等式恒成立,即时,不等式化为,解得,即综上所述,不等式的解集为(Ⅱ)不等式的解集为对任意恒成立当时,取得最小值为实数的取值范围是【题目点拨】本题考查了绝对值不等式的解法与应用问题,也考查了函数绝对值三角不等式的应用问题,属于常规题型.18、(1)(2)点的坐标为【解题分析】
将抛物线方程与圆方程联立,消去得到关于的一元二次方程,抛物线与圆有四个交点需满足关于的一元二次方程在上有两个不等的实数根,根据二次函数的有关性质即可得到关于的不等式组,解不等式即可.不妨设抛物线与圆的四个交点坐标为,,,,据此可表示出直线、的方程,联立方程即可表示出点坐标,再根据等腰梯形的面积公式可得四边形的面积的表达式,令,由及知,对关于的面积函数进行求导,判断其单调性和最值,即可求出四边形的面积取得最大值时的值,进而求出点坐标.【题目详解】(1)联立抛物线与圆的方程消去,得.由题意可知在上有两个不等的实数根.所以解得,所以的取值范围为.(2)根据(1)可设方程的两个根分别为,(),则,,,,且,,所以直线、的方程分别为,,联立方程可得,点的坐标为,因为四边形为等腰梯形,所以,令,则,所以,因为,所以当时,;当时,,所以函数在上单调递增,在上单调递减,即当时,四边形的面积取得最大值,因为,点的坐标为,所以当四边形的面积取得最大值时,点的坐标为.【题目点拨】本题考查利用导数求函数的极值与最值、抛物线及其标准方程及直线与圆锥曲线相关的最值问题;考查运算求解能力、转化与化归能力和知识的综合运用能力;利用函数的思想求圆锥曲线中面积的最值是求解本题的关键;属于综合型强、难度大型试题.19、(1)证明见解析(2)证明见解析【解题分析】
(1)求导得,由,且,得到,再利用函数在上单调递减论证.(2)根据题意,求导,令,易知;,易知当时,,;当时,函数单调递增,而,又,由零点存在定理得,使得,,使得,有从而得证.【题目详解】(1)依题意,,因为,且,故,故函数在上单调递减,故.(2)依题意,,令,则;而,可知当时,,故函数在上单调递增,故当时,;当时,函数单调递增,而,又,故,使得,故,使得,即函数单调递增,即单调递增;故当时,,故函数在上单调递减,在上单调递增,故当时,函数有极小值.【题目点拨】本题考查利用导数研究函数的性质,还考查推理论证能力以及函数与方程思想,属于难题.20、(1);(2)【解题分析】
(1)根据奇函数定义,可知;令则,结合奇函数定义即可求得时的解析式,进而得函数的解析式;(2)根据零点定义,可得,由函数图像分析可知曲线与直线在第三象限必1个交点,因而需在第一象限有2个交点,将与联立,由判别式及两根之和大于0,即可求得的取值范围.【题目详解】(1)因为函数为奇函数,且,故;当时,,,则;故.(2)令,解得,画出函数关系如下图所示,要使曲线与直线有3个交点,则2个交点在第一象限,1个交点在第三象限,联立,化简可得,令,即,解得,所以实数的取值范围为.【题目点拨
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 听评课记录六年级数学
- 2022年新课标八年级上册道德与法第四课 社会生活讲道德 听课评课记录
- 五年级下册数学听评课记录《1总复习:倍数和因数》人教新课标
- 华师大版数学八年级下册《平行四边形边、角的性质》听评课记录
- 数学听评课记录二年级下
- 《青铜器与甲骨文》名师听课评课记录(新部编人教版七年级上册历史)
- 新人教版七年级数学上册2.2《 整式的加减》听评课记录
- 青岛版数学八年级下册《实数》听评课记录1
- 小学二年级口算题
- 乡村振兴银企战略合作协议书范本
- (2024版)中国血脂管理指南
- 集成墙板购销合同范本(2024版)
- 2023九年级历史下册 第三单元 第一次世界大战和战后初期的世界第10课《凡尔赛条约》和《九国公约》教案 新人教版
- 骨髓穿刺课件
- 持续质量改进项目汇报
- 2024版买卖二手车合同范本
- 2024中国保险发展报告-中南大风险管理研究中心.燕道数科
- 元素的用途完整版本
- 第15课 列强入侵与中国人民的反抗斗争 教学设计-2023-2024学年中职高一上学期高教版(2023)中国历史全一册
- 建筑设计工程设计方案
- 供热行业环境保护管理办法
评论
0/150
提交评论