




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省罗定市重点中学2024届高三下学期第2次月考数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若的展开式中含有常数项,且的最小值为,则()A. B. C. D.2.已知点,是函数的函数图像上的任意两点,且在点处的切线与直线AB平行,则()A.,b为任意非零实数 B.,a为任意非零实数C.a、b均为任意实数 D.不存在满足条件的实数a,b3.高三珠海一模中,经抽样分析,全市理科数学成绩X近似服从正态分布,且.从中随机抽取参加此次考试的学生500名,估计理科数学成绩不低于110分的学生人数约为()A.40 B.60 C.80 D.1004.已知命题,且是的必要不充分条件,则实数的取值范围为()A. B. C. D.5.新闻出版业不断推进供给侧结构性改革,深入推动优化升级和融合发展,持续提高优质出口产品供给,实现了行业的良性发展.下面是2012年至2016年我国新闻出版业和数字出版业营收增长情况,则下列说法错误的是()A.2012年至2016年我国新闻出版业和数字出版业营收均逐年增加B.2016年我国数字出版业营收超过2012年我国数字出版业营收的2倍C.2016年我国新闻出版业营收超过2012年我国新闻出版业营收的1.5倍D.2016年我国数字出版营收占新闻出版营收的比例未超过三分之一6.各项都是正数的等比数列的公比,且成等差数列,则的值为()A. B.C. D.或7.已知直四棱柱的所有棱长相等,,则直线与平面所成角的正切值等于()A. B. C. D.8.若复数为虚数单位在复平面内所对应的点在虚轴上,则实数a为()A. B.2 C. D.9.若,则的值为()A. B. C. D.10.如图所示的茎叶图为高三某班名学生的化学考试成绩,算法框图中输入的,,,,为茎叶图中的学生成绩,则输出的,分别是()A., B.,C., D.,11.若复数()在复平面内的对应点在直线上,则等于()A. B. C. D.12.若复数在复平面内对应的点在第二象限,则实数的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知为椭圆内一定点,经过引一条弦,使此弦被点平分,则此弦所在的直线方程为________________.14.已知抛物线的焦点为,直线与抛物线相切于点,是上一点(不与重合),若以线段为直径的圆恰好经过,则点到抛物线顶点的距离的最小值是__________.15.已知数列的各项均为正数,记为的前n项和,若,,则________.16.根据记载,最早发现勾股定理的人应是我国西周时期的数学家商高,商高曾经和周公讨论过“勾3股4弦5”的问题.现有满足“勾3股4弦5”,其中“股”,为“弦”上一点(不含端点),且满足勾股定理,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(Ⅰ)若是第二象限角,且,求的值;(Ⅱ)求函数的定义域和值域.18.(12分)如图,直三棱柱中,分别是的中点,.(1)证明:平面;(2)求二面角的余弦值.19.(12分)在直角坐标系中,直线的参数方程为(为参数,).在以为极点,轴正半轴为极轴的极坐标中,曲线:.(1)当时,求与的交点的极坐标;(2)直线与曲线交于,两点,线段中点为,求的值.20.(12分)已知函数.(1)若不等式有解,求实数的取值范围;(2)函数的最小值为,若正实数,,满足,证明:.21.(12分)在中,角A,B,C的对边分别是a,b,c,且向量与向量共线.(1)求B;(2)若,,且,求BD的长度.22.(10分)已知为各项均为整数的等差数列,为的前项和,若为和的等比中项,.(1)求数列的通项公式;(2)若,求最大的正整数,使得.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】展开式的通项为,因为展开式中含有常数项,所以,即为整数,故n的最小值为1.所以.故选C点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.2、A【解题分析】
求得的导函数,结合两点斜率公式和两直线平行的条件:斜率相等,化简可得,为任意非零实数.【题目详解】依题意,在点处的切线与直线AB平行,即有,所以,由于对任意上式都成立,可得,为非零实数.故选:A【题目点拨】本题考查导数的运用,求切线的斜率,考查两点的斜率公式,以及化简运算能力,属于中档题.3、D【解题分析】
由正态分布的性质,根据题意,得到,求出概率,再由题中数据,即可求出结果.【题目详解】由题意,成绩X近似服从正态分布,则正态分布曲线的对称轴为,根据正态分布曲线的对称性,求得,所以该市某校有500人中,估计该校数学成绩不低于110分的人数为人,故选:.【题目点拨】本题考查正态分布的图象和性质,考查学生分析问题的能力,难度容易.4、D【解题分析】
求出命题不等式的解为,是的必要不充分条件,得是的子集,建立不等式求解.【题目详解】解:命题,即:,是的必要不充分条件,,,解得.实数的取值范围为.故选:.【题目点拨】本题考查根据充分、必要条件求参数范围,其思路方法:(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解.(2)求解参数的取值范围时,一定要注意区间端点值的检验.5、C【解题分析】
通过图表所给数据,逐个选项验证.【题目详解】根据图示数据可知选项A正确;对于选项B:,正确;对于选项C:,故C不正确;对于选项D:,正确.选C.【题目点拨】本题主要考查柱状图是识别和数据分析,题目较为简单.6、C【解题分析】分析:解决该题的关键是求得等比数列的公比,利用题中所给的条件,建立项之间的关系,从而得到公比所满足的等量关系式,解方程即可得结果.详解:根据题意有,即,因为数列各项都是正数,所以,而,故选C.点睛:该题应用题的条件可以求得等比数列的公比,而待求量就是,代入即可得结果.7、D【解题分析】
以为坐标原点,所在直线为x轴,所在直线为轴,所在直线为轴,建立空间直角坐标系.求解平面的法向量,利用线面角的向量公式即得解.【题目详解】如图所示的直四棱柱,,取中点,以为坐标原点,所在直线为x轴,所在直线为轴,所在直线为轴,建立空间直角坐标系.设,则,.设平面的法向量为,则取,得.设直线与平面所成角为,则,,∴直线与平面所成角的正切值等于故选:D【题目点拨】本题考查了向量法求解线面角,考查了学生空间想象,逻辑推理,数学运算的能力,属于中档题.8、D【解题分析】
利用复数代数形式的乘除运算化简,再由实部为求得值.【题目详解】解:在复平面内所对应的点在虚轴上,,即.故选D.【题目点拨】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.9、C【解题分析】
根据,再根据二项式的通项公式进行求解即可.【题目详解】因为,所以二项式的展开式的通项公式为:,令,所以,因此有.故选:C【题目点拨】本题考查了二项式定理的应用,考查了二项式展开式通项公式的应用,考查了数学运算能力10、B【解题分析】
试题分析:由程序框图可知,框图统计的是成绩不小于80和成绩不小于60且小于80的人数,由茎叶图可知,成绩不小于80的有12个,成绩不小于60且小于80的有26个,故,.考点:程序框图、茎叶图.11、C【解题分析】
由题意得,可求得,再根据共轭复数的定义可得选项.【题目详解】由题意得,解得,所以,所以,故选:C.【题目点拨】本题考查复数的几何表示和共轭复数的定义,属于基础题.12、B【解题分析】
复数,在复平面内对应的点在第二象限,可得关于a的不等式组,解得a的范围.【题目详解】,由其在复平面对应的点在第二象限,得,则.故选:B.【题目点拨】本题考查了复数的运算法则、几何意义、不等式的解法,考查了推理能力与计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
设弦所在的直线与椭圆相交于、两点,利用点差法可求得直线的斜率,进而可求得直线的点斜式方程,化为一般式即可.【题目详解】设弦所在的直线与椭圆相交于、两点,由于点为弦的中点,则,得,由题意得,两式相减得,所以,直线的斜率为,所以,弦所在的直线方程为,即.故答案为:.【题目点拨】本题考查利用弦的中点求弦所在直线的方程,一般利用点差法,也可以利用韦达定理设而不求法来解答,考查计算能力,属于中等题.14、【解题分析】
根据抛物线,不妨设,取,通过求导得,,再根据以线段为直径的圆恰好经过,则,得到,两式联立,求得点N的轨迹,再求解最值.【题目详解】因为抛物线,不妨设,取,所以,即,所以,因为以线段为直径的圆恰好经过,所以,所以,所以,由,解得,所以点在直线上,所以当时,最小,最小值为.故答案为:2【题目点拨】本题主要考查直线与抛物线的位置关系直线的交轨问题,还考查了运算求解的能力,属于中档题.15、127【解题分析】
已知条件化简可化为,等式两边同时除以,则有,通过求解方程可解得,即证得数列为等比数列,根据已知即可解得所求.【题目详解】由..故答案为:.【题目点拨】本题考查通过递推公式证明数列为等比数列,考查了等比的求和公式,考查学生分析问题的能力,难度较易.16、【解题分析】
先由等面积法求得,利用向量几何意义求解即可.【题目详解】由等面积法可得,依题意可得,,所以.故答案为:【题目点拨】本题考查向量的数量积,重点考查向量数量积的几何意义,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)函数的定义域为,值域为【解题分析】
(1)由为第二象限角及的值,利用同角三角函数间的基本关系求出及的值,再代入中即可得到结果.(2)函数解析式利用二倍角和辅助角公式将化为一个角的正弦函数,根据的范围,即可得到函数值域.【题目详解】解:(1)因为是第二象限角,且,所以.所以,所以.(2)函数的定义域为.化简,得,因为,且,,所以,所以.所以函数的值域为.(注:或许有人会认为“因为,所以”,其实不然,因为.)【题目点拨】本题考查同角三角函数的基本关系式,三角函数函数值求解以及定义域和值域的求解问题,涉及到利用二倍角公式和辅助角公式整理三角函数关系式的问题,意在考查学生的转化能力和计算求解能力,属于常考题型.18、(1)证明见解析(2)【解题分析】
(1)连接交于点,由三角形中位线定理得,由此能证明平面.(2)以为坐标原点,的方向为轴正方向,的方向为轴正方向,的方向为轴正方向,建立空间直角坐标系.分别求出平面的法向量和平面的法向量,利用向量法能求出二面角的余弦值.【题目详解】证明:证明:连接交于点,则为的中点.又是的中点,连接,则.因为平面,平面,所以平面.(2)由,可得:,即所以又因为直棱柱,所以以点为坐标原点,分别以直线为轴、轴、轴,建立空间直角坐标系,则,设平面的法向量为,则且,可解得,令,得平面的一个法向量为,同理可得平面的一个法向量为,则所以二面角的余弦值为.【题目点拨】本题主要考查直线与平面平行、二面角的概念、求法等知识,考查空间想象能力和逻辑推理能力,属于中档题.19、(1),;(2)【解题分析】
(1)依题意可知,直线的极坐标方程为(),再对分三种情况考虑;(2)利用直线参数方程参数的几何意义,求弦长即可得到答案.【题目详解】(1)依题意可知,直线的极坐标方程为(),当时,联立解得交点,当时,经检验满足两方程,(易漏解之处忽略的情况)当时,无交点;综上,曲线与直线的点极坐标为,,(2)把直线的参数方程代入曲线,得,可知,,所以.【题目点拨】本题考查直线与曲线交点的极坐标、利用参数方程参数的几何意义求弦长,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力、运算求解能力.20、(1)(2)见解析【解题分析】
(1)分离得到,求的最小值即可求得的取值范围;(2)先求出,得到,利用乘变化即可证明不等式.【题目详解】解:(1)设,∴在上单调递减,在上单调递增.故.∵有解,∴.即的取值范围为.(2),当且仅当时等号成立.∴,即.∵.当且仅当,,时等号成立.∴,即成立.【题目点拨】此题考查不等式的证明,注意定值乘变化的灵活应用,属于较易题目.21、(1)(2)【解题分析】
(1)根据共线得到,利用正弦定理化简得到答案.(2)根据余弦定理得到,,再利用余弦定理计算得到答案.【题目详解】(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人招聘员工合同范本
- 劳务外包承揽合同范本
- 个人公司工程劳务合同范本
- 厨房入职合同范本
- 医院药品合同范本
- 合同范本两人
- 厨房翻修出租合同范例
- 公司改制合同范例
- 司机临时合同范本
- 单位招人合同范例
- 2025年山东泰山财产保险股份有限公司招聘笔试参考题库含答案解析
- 初中物理竞赛及自主招生讲义:第7讲 密度、压强与浮力(共5节)含解析
- 高中主题班会 梁文锋和他的DeepSeek-由DeepSeek爆火开启高中第一课-高中主题班会课件
- 污水处理设施运维服务投标方案(技术标)
- 一年级下册书法教案 (一)
- 《浙江省应急管理行政处罚裁量基准适用细则》知识培训
- 2024年全国职业院校技能大赛高职组(康复治疗技术赛项)考试题库(含答案)
- 2025年山东健康集团招聘笔试参考题库含答案解析
- 《中外广播电视史》课件
- 微信公众号运营
- DLT 593-2016 高压开关设备和控制设备
评论
0/150
提交评论