版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年南昌市初中教育集团数学九年级第一学期期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,已知A(2,1),现将A点绕原点O逆时针旋转90°得到A1,则A1的坐标是()A.(﹣1,2) B.(2,﹣1) C.(1,﹣2) D.(﹣2,1)2.若二次函数y=ax2+bx+c的图象经过点(﹣1,0)和(3,0),则方程ax2+bx+c=0的解为()A.x1=﹣3,x2=﹣1 B.x1=1,x2=3C.x1=﹣1,x2=3 D.x1=﹣3,x2=13.如图:已知,且,则()A.5 B.3 C.3.2 D.44.下列运算正确的是()A.x6÷x3=x2 B.(x3)2=x5 C. D.5.下列关于x的一元二次方程没有实数根的是()A. B. C. D.6.如图,菱形ABCD中,EF⊥AC,垂足为点H,分别交AD、AB及CB的延长线交于点E、M、F,且AE:FB=1:2,则AH:AC的值为()A. B. C. D.7.在平面直角坐标系中,反比例函数的图象经过点(1,3),则的值可以为A. B. C. D.8.如图,的直径的长为,弦长为,的平分线交于,则长为()A.7 B.7 C.8 D.99.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离(千米)与快车行驶时间t(小时)之间的函数图象是A. B.C. D.10.一元二次方程4x2﹣3x+=0根的情况是()A.没有实数根 B.只有一个实数根C.有两个相等的实数根 D.有两个不相等的实数根11.x=1是关于x的一元二次方程x2+ax﹣2b=0的解,则2a﹣4b的值为()A.﹣2 B.﹣1 C.1 D.212.抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,则c的值不可能是()A.4 B.6 C.8 D.10二、填空题(每题4分,共24分)13.已知,如图,在□ABCD中,AB=4cm,AD=7cm,∠ABC的平分线交AD于点E,交CD的延长线于点F,则DF=______cm.14.在平面坐标系中,第1个正方形的位置如图所示,点的坐标为,点的坐标为,延长交轴于点,作第2个正方形,延长交轴于点;作第3个正方形,…按这样的规律进行下去,第5个正方形的边长为__________.15.如图,在半径为的中,的长为,若随意向圆内投掷一个小球,小球落在阴影部分的概率为______________.16.如图,面积为6的矩形的顶点在反比例函数的图像上,则__________.17.如图,⊙O的半径为6cm,直线AB是⊙O的切线,切点为点B,弦BC∥AO,若∠A=30°,则劣弧的长为cm.18.定义符号max{a,b}的含义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b}=b,如:max{3,1}=3,max{﹣3,2}=2,则方程max{x,﹣x}=x2﹣6的解是_____.三、解答题(共78分)19.(8分)已知关于的一元二次方程.(1)若方程有实数根,求实数的取值范围;(2)若方程的两个实根为,且满足,求实数的值.20.(8分)如图,在梯形ABCD中,AD//BC,AC与BD相交于点O,点E在线段OB上,AE的延长线与BC相交于点F,OD2=OB·OE.(1)求证:四边形AFCD是平行四边形;(2)如果BC=BD,AE·AF=AD·BF,求证:△ABE∽△ACD.21.(8分)如图,在矩形ABCD中,AB=6,AD=12,点E在AD边上,且AE=8,EF⊥BE交CD于F(1)求证:△ABE∽△DEF;(2)求EF的长.22.(10分)已知在△ABC中,AB=BC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED.(1)求证:ED=DC;(2)若CD=6,EC=4,求AB的长.23.(10分)如图,在中,,,点在边上,且线段绕着点按逆时针方向旋转能与重合,点是与的交点.(1)求证:;(2)若,求的度数.24.(10分)国家计划2035年前实施新能源汽车,某公司为加快新旧动能转换,提高公司经济效益,决定对近期研发出的一种新型能源产品进行降价促销.根据市场调查:这种新型能源产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个新型能源产品的成本为100元.问:(1)设该产品的销售单价为元,每天的利润为元.则_________(用含的代数式表示)(2)这种新型能源产品降价后的销售单价为多少元时,公司每天可获利32000元?25.(12分)如图所示,以的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线.如果不考虑空气阻力,球的飞行高度(单位:)与飞行时间(单位:)之间具有关系式.解答以下问题:(1)球的飞行高度能否达到?如能,需要飞行多少时间?(2)球飞行到最高点时的高度是多少?26.关于的方程有实根.(1)求的取值范围;(2)设方程的两实根分别为且,求的值.
参考答案一、选择题(每题4分,共48分)1、A【解析】根据点(x,y)绕原点逆时针旋转90°得到的坐标为(-y,x)解答即可.【详解】已知A(2,1),现将A点绕原点O逆时针旋转90°得到A1,所以A1的坐标为(﹣1,2).故选A.【点睛】本题考查的是旋转的性质,熟练掌握坐标的旋转是解题的关键.2、C【分析】利用抛物线与x轴的交点问题确定方程ax2+bx+c=0的解.【详解】解:∵二次函数y=ax2+bx+c的图象经过点(﹣1,0)和(1,0),∴方程ax2+bx+c=0的解为x1=﹣1,x2=1.故选:C.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.3、C【分析】根据平行线分线段成比例定理列出比例式,代入数值进行计算即可.【详解】解:∵AD∥BE∥CF∴∵AB=4,BC=5,EF=4∴∴DE=3.2故选C【点睛】本题考查平行线分线段成比例定理,找准对应关系是解答此题的关键.4、D【分析】分别根据同底数幂的乘法法则,幂的乘方运算法则,算术平方根的定义以及立方根的定义逐一判断即可.【详解】解:A.x6÷x3=x3,故本选项不合题意;B.(x3)2=x6,故本选项不合题意;C.,故本选项不合题意;D.,正确,故本选项符合题意.故选:D.【点睛】本题主要考查了算术平方根、立方根、同底数幂的除法以及幂的乘方与积的乘方,熟记修改运算法则是解答本题的关键.5、D【解析】利用一元二次方程的根的判别式逐项判断即可.【详解】一元二次方程的根的判别式为,逐项判断如下:A、,方程有两个不相等的实数根,不符题意B、,方程有两个相等的实数根,符合题意C、,方程有两个不相等的实数根,不符题意D、,方程没有实数根,符合题意故选:D.【点睛】本题考查了一元二次方程的根的判别式,对于一般形式有:(1)当时,方程有两个不相等的实数根;(2)当时,方程有两个相等的实数根;(3)当时,方程没有实数根.6、B【分析】连接BD,如图,利用菱形的性质得AC⊥BD,AD=BC,AD∥BC,再证明EF∥BD,接着判断四边形BDEF为平行四边形得到DE=BF,设AE=x,FB=DE=2x,BC=3x,所以AE:CF=1:5,然后证明△AEH∽△CFH得到AH:HC=AE:CF=1:5,最后利用比例的性质得到AH:AC的值.【详解】解:连接BD,如图,∵四边形ABCD为菱形,∴AC⊥BD,AD=BC,AD∥BC,∵EF⊥AC,∴EF∥BD,而DE∥BF,∴四边形BDEF为平行四边形,∴DE=BF,由AE:FB=1:2,设AE=x,FB=DE=2x,BC=3x,∴AE:CF=x:5x=1:5,∵AE∥CF,∴△AEH∽△CFH,∴AH:HC=AE:CF=1:5,∴AH:AC=1:1.故选:B.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知菱形的性质及相似三角形的性质.7、B【分析】把点(1,3)代入中即可求得k值.【详解】解:把x=1,y=3代入中得,∴k=3.故选:B.【点睛】本题考查了用待定系数法求反比例函数的解析式,能理解把已知点的坐标代入解析式是解题关键.8、B【解析】作DF⊥CA,交CA的延长线于点F,作DG⊥CB于点G,连接DA,DB.由CD平分∠ACB,根据角平分线的性质得出DF=DG,由HL证明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,从而求出CD=7.【详解】作DF⊥CA,垂足F在CA的延长线上,作DG⊥CB于点G,连接DA,DB,∵CD平分∠ACB,∴∠ACD=∠BCD∴DF=DG,,∴DA=DB,∵∠AFD=∠BGD=90°,∴△AFD≌△BGD,∴AF=BG.易证△CDF≌△CDG,∴CF=CG,∵AC=6,BC=8,∴AF=1,∴CF=7,∵△CDF是等腰直角三角形,∴CD=7,故选B.【点睛】本题综合考查了圆周角的性质,圆心角、弧、弦的对等关系,全等三角形的判定,角平分线的性质等,综合性较强,有一定的难度,正确添加辅助线、熟练应用相关知识是解题的关键.9、C【解析】分三段讨论:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意.故选C.10、D【分析】根据方程的系数结合根的判别式,即可得出△>0,由此即可得出原方程有两个不相等的实数根.【详解】解:4x2﹣3x+=0,这里a=4,b=﹣3,c=,b2﹣4ac=(﹣3)2﹣4×=5>0,所以方程有两个不相等的实数根,故选:D.【点睛】本题考查的知识点是根据一元二次方程根的判别式来判断方程的解的情况,熟记公式是解此题的关键.11、A【分析】先把x=1代入方程x2+ax-2b=0得a-2b=-1,然后利用整体代入的方法计算2a-4b的值即可.【详解】将x=1代入原方程可得:1+a﹣2b=0,∴a﹣2b=﹣1,∴原式=2(a﹣2b)=﹣2,故选:A.【点睛】本题考查了一元二次方程的解的定义.一元二次方程的解就是能够使方程左右两边相等的未知数的值.12、A【解析】试题分析:根据抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,可以得到c的取值范围,从而可以解答本题.∵抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,∴解得6≤c≤14考点:二次函数的性质二、填空题(每题4分,共24分)13、3.【分析】首先根据平行四边形的性质,得出AB=CD=4cm,AD=BC=7cm,∠ABF=∠BFC,又由BF是∠ABC的角平分线,可得∠ABF=∠CBF,∠BFC=∠CBF,进而得出CF=BC,即可得出DF.【详解】,解:∵在□ABCD中,AB=4cm,AD=7cm,∴AB=CD=4cm,AD=BC=7cm,∠ABF=∠BFC又∵BF是∠ABC的角平分线∴∠ABF=∠CBF∴∠BFC=∠CBF∴CF=BC=7cm∴DF=CF-CD=7-4=3cm,故答案为3.【点睛】此题主要利用平行四边形的性质,熟练运用即可解题.14、【分析】先求出第一个正方形ABCD的边长,再利用△OAD∽△BA1A求出第一个正方形的边长,再求第三个正方形边长,得出规律可求出第5个正方形的边长.【详解】∵点的坐标为,点的坐标为∴OA=3,OD=4,∴∵∠DAB=90°∴∠DAO+∠BAA1=90°,又∵∠DAO+∠ODA=90°,∴∠ODA=∠BAA1∴△OAD∽△BA1A∴即∴∴同理可求得得出规律,第n个正方形的边长为∴第5个正方形的边长为.【点睛】本题考查正方形的性质,相似三角形的判定和性质,勾股定理的运用,此题的关键是根据计算的结果得出规律.15、【分析】根据圆的面积公式和扇形的面积公式分别求得各自的面积,再根据概率公式即可得出答案.【详解】∵圆的面积是:,扇形的面积是:,∴小球落在阴影部分的概率为:.故答案为:.【点睛】本题主要考查了几何概率问题,用到的知识点为:概率=相应面积与总面积之比.16、-1【分析】根据反比例函数系数k的几何意义可得|k|=1,再根据函数所在的象限确定k的值.【详解】解:∵反比例函数的图象经过面积为1的矩形OABC的顶点B,
∴|k|=1,k=±1,
∵反比例函数的图象经过第二象限,
∴k=-1.
故答案为:-1.【点睛】主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|.17、.【解析】根据切线的性质可得出OB⊥AB,从而求出∠BOA的度数,利用弦BC∥AO,及OB=OC可得出∠BOC的度数,代入弧长公式即可得出答案:∵直线AB是⊙O的切线,∴OB⊥AB(切线的性质).又∵∠A=30°,∴∠BOA=60°(直角三角形两锐角互余).∵弦BC∥AO,∴∠CBO=∠BOA=60°(两直线平行,内错角相等).又∵OB=OC,∴△OBC是等边三角形(等边三角形的判定).∴∠BOC=60°(等边三角形的每个内角等于60°).又∵⊙O的半径为6cm,∴劣弧的长=(cm).18、1或﹣1【分析】分两种情况:x≥﹣x,即x≥0时;x<﹣x,即x<0时;进行讨论即可求解.【详解】当x≥﹣x,即x≥0时,∴x=x2﹣6,即x2﹣x﹣6=0,(x﹣1)(x+2)=0,解得:x1=1,x2=﹣2(舍去);当x<﹣x,即x<0时,∴﹣x=x2﹣6,即x2+x﹣6=0,(x+1)(x﹣2)=0,解得:x1=﹣1,x4=2(舍去).故方程max{x,﹣x}=x2﹣6的解是x=1或﹣1.故答案为:1或﹣1.【点睛】考查了解了一元二次方程-因式分解法,关键是熟练掌握定义符号max{a,b}的含义,注意分类思想的应用.三、解答题(共78分)19、(1);(2).【分析】(1)根据一元二次方程的根的判别式即可得;(2)先根据一元二次方程的根与系数的关系可得,从而可得求出,再代入方程即可得.【详解】(1)∵原方程有实数根,∴方程的根的判别式,解得;(2)由一元二次方程的根与系数的关系得:,又,,将代入原方程得:,解得.【点睛】本题考查了一元二次方程的根的判别式、以及根与系数的关系,较难的是题(2),熟练掌握根与系数的关系是解题关键.20、(1)证明见解析;(2)证明见解析【分析】(1)由题意,得到,然后由AD∥BC,得到,则,即可得到AF//CD,即可得到结论;(2)先证明∠AED=∠BCD,得到∠AEB=∠ADC,然后证明得到,即可得到△ABE∽△ADC.【详解】证明:(1)∵OD2=OE·OB,∴.∵AD//BC,∴.∴.∴AF//CD.∴四边形AFCD是平行四边形.(2)∵AF//CD,∴∠AED=∠BDC,.∵BC=BD,∴BE=BF,∠BDC=∠BCD∴∠AED=∠BCD.∵∠AEB=180°∠AED,∠ADC=180°∠BCD,∴∠AEB=∠ADC.∵AE·AF=AD·BF,∴.∵四边形AFCD是平行四边形,∴AF=CD.∴.∴△ABE∽△ADC.【点睛】本题考查了相似三角形的判定和性质,平行线分线段成比例,平行四边形的判定和性质,以及平行线的性质,解题的关键是熟练掌握相似三角形的判定方法,正确找到证明三角形相似的条件.21、(1)证明见解析(2)【分析】(1)由四边形ABCD是矩形,易得∠A=∠D=90°,又由EF⊥BE,利用同角的余角相等,即可得∠DEF=∠ABE,则可证得△ABE∽△DEF.(2)由(1)△ABE∽△DEF,根据相似三角形的对应边成比例,即可得,又由AB=6,AD=12,AE=8,利用勾股定理求得BE的长,由DE=AB-AE,求得DE的长,从而求得EF的长.【详解】(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,∴∠AEB+∠ABE=90°.∵EF⊥BE,∴∠AEB+∠DEF=90°,∴∠DEF=∠ABE.∴△ABE∽△DEF.(2)解:∵△ABE∽△DEF,∴.∵AB=6,AD=12,AE=8,∴,DE=AD-AE=12-8=1.∴,解得:.22、(1)证明见解析;(2)AB=6.【分析】(1)根据圆内接四边形的性质得出∠DEC=∠A,根据等腰三角形的性质得出∠A=∠C,求出∠DEC=∠C,根据等腰三角形的判定得出即可;
(2)连接BD,根据圆周角定理求出∠ADB=90°,根据等腰三角形的性质求出AC长,再求出△DEC∽△BAC,得出比例式,即可求出答案.【详解】(1)证明:∵A、B、E、D四点共圆,∴∠DEC=∠A,∵AB=BC,∴∠A=∠C,∴∠DEC=∠C,∴ED=DC;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,即BD⊥AC,∵AB=BC,CD=6,∴AD=DC=6,∴AC=12,∵∠A=∠DEC,∠C=∠C,∴△DEC∽△BAC,∴,∴,解得:BC=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 村某年上半年工作总结和下半年工作计划
- 国有企业公司工会工作总结及工作计划
- 2024年模具工作总结报告 模具工作总结与计划
- 商业计划书是直邮读物商业计划书
- 高中实验教学计划
- 信息化与工业化深度融合实施方案编制调研工作计划
- 八年级上册体育教学计划
- 2024年农村小学班主任工作计划
- 铜仁市万山区2023年八年级下学期《数学》期中试题与参考答案
- 乡镇农业工作总结及工作计划
- 初中音乐教师个人成长专业发展计划
- 十八项医疗核心制度考试题与答案
- 上海市进才实验中学2024-2025学年九年级上学期期中英语试题
- 山东师范大学马克思主义基本原理期末复习题
- GB/T 44705-2024道路运输液体危险货物罐式车辆罐体清洗要求
- 护理类医疗设备采购 投标方案(技术方案)
- 食品安全总监、安全员考试题库2024
- 国开(河北)2024年秋《宣传工作实务》形考任务1-4答案
- 2024年新疆维吾尔自治区普通高中学业水平考试语文试题(解析版)
- 2024年法律职业资格考试主观题试卷及答案指导
- 员工合同劳动合同范例
评论
0/150
提交评论