版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河北省石家庄市一中、唐山一中等“五个一”名校高考第二次模拟考试数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.执行如图所示的程序框图后,输出的值为5,则的取值范围是().A. B. C. D.2.音乐,是用声音来展现美,给人以听觉上的享受,熔铸人们的美学趣味.著名数学家傅立叶研究了乐声的本质,他证明了所有的乐声都能用数学表达式来描述,它们是一些形如的简单正弦函数的和,其中频率最低的一项是基本音,其余的为泛音.由乐声的数学表达式可知,所有泛音的频率都是基本音频率的整数倍,称为基本音的谐波.下列函数中不能与函数构成乐音的是()A. B. C. D.3.已知为正项等比数列,是它的前项和,若,且与的等差中项为,则的值是()A.29 B.30 C.31 D.324.已知函数是上的偶函数,且当时,函数是单调递减函数,则,,的大小关系是()A. B.C. D.5.已知函数若关于的方程有六个不相等的实数根,则实数的取值范围为()A. B. C. D.6.是正四面体的面内一动点,为棱中点,记与平面成角为定值,若点的轨迹为一段抛物线,则()A. B. C. D.7.下列命题为真命题的个数是()(其中,为无理数)①;②;③.A.0 B.1 C.2 D.38.函数的部分图象大致为()A. B.C. D.9.已知,则的值等于()A. B. C. D.10.已知函数是上的偶函数,是的奇函数,且,则的值为()A. B. C. D.11.已知向量,则()A.∥ B.⊥ C.∥() D.⊥()12.若复数满足,则的虚部为()A.5 B. C. D.-5二、填空题:本题共4小题,每小题5分,共20分。13.一个算法的伪代码如图所示,执行此算法,最后输出的T的值为________.14.已知三棱锥中,,,则该三棱锥的外接球的表面积是________.15.过直线上一动点向圆引两条切线MA,MB,切点为A,B,若,则四边形MACB的最小面积的概率为________.16.根据如图的算法,输出的结果是_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的上顶点为,圆与轴的正半轴交于点,与有且仅有两个交点且都在轴上,(为坐标原点).(1)求椭圆的方程;(2)已知点,不过点且斜率为的直线与椭圆交于两点,证明:直线与直线的斜率互为相反数.18.(12分)在锐角中,分别是角的对边,,,且.(1)求角的大小;(2)求函数的值域.19.(12分)P是圆上的动点,P点在x轴上的射影是D,点M满足.(1)求动点M的轨迹C的方程,并说明轨迹是什么图形;(2)过点的直线l与动点M的轨迹C交于不同的两点A,B,求以OA,OB为邻边的平行四边形OAEB的顶点E的轨迹方程.20.(12分)已知矩阵的一个特征值为3,求另一个特征值及其对应的一个特征向量.21.(12分)已知函数()的图象在处的切线为(为自然对数的底数)(1)求的值;(2)若,且对任意恒成立,求的最大值.22.(10分)已知椭圆的焦距为2,且过点.(1)求椭圆的方程;(2)设为的左焦点,点为直线上任意一点,过点作的垂线交于两点,(ⅰ)证明:平分线段(其中为坐标原点);(ⅱ)当取最小值时,求点的坐标.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
框图的功能是求等比数列的和,直到和不满足给定的值时,退出循环,输出n.【题目详解】第一次循环:;第二次循环:;第三次循环:;第四次循环:;此时满足输出结果,故.故选:C.【题目点拨】本题考查程序框图的应用,建议数据比较小时,可以一步一步的书写,防止错误,是一道容易题.2、C【解题分析】
由基本音的谐波的定义可得,利用可得,即可判断选项.【题目详解】由题,所有泛音的频率都是基本音频率的整数倍,称为基本音的谐波,由,可知若,则必有,故选:C【题目点拨】本题考查三角函数的周期与频率,考查理解分析能力.3、B【解题分析】
设正项等比数列的公比为q,运用等比数列的通项公式和等差数列的性质,求出公比,再由等比数列的求和公式,计算即可得到所求.【题目详解】设正项等比数列的公比为q,则a4=16q3,a7=16q6,a4与a7的等差中项为,即有a4+a7=,即16q3+16q6,=,解得q=(负值舍去),则有S5===1.故选C.【题目点拨】本题考查等比数列的通项和求和公式的运用,同时考查等差数列的性质,考查运算能力,属于中档题.4、D【解题分析】
利用对数函数的单调性可得,再根据的单调性和奇偶性可得正确的选项.【题目详解】因为,,故.又,故.因为当时,函数是单调递减函数,所以.因为为偶函数,故,所以.故选:D.【题目点拨】本题考查抽象函数的奇偶性、单调性以及对数函数的单调性在大小比较中的应用,比较大小时注意选择合适的中间数来传递不等关系,本题属于中档题.5、B【解题分析】
令,则,由图象分析可知在上有两个不同的根,再利用一元二次方程根的分布即可解决.【题目详解】令,则,如图与顶多只有3个不同交点,要使关于的方程有六个不相等的实数根,则有两个不同的根,设由根的分布可知,,解得.故选:B.【题目点拨】本题考查复合方程根的个数问题,涉及到一元二次方程根的分布,考查学生转化与化归和数形结合的思想,是一道中档题.6、B【解题分析】
设正四面体的棱长为,建立空间直角坐标系,求出各点的坐标,求出面的法向量,设的坐标,求出向量,求出线面所成角的正弦值,再由角的范围,结合为定值,得出为定值,且的轨迹为一段抛物线,所以求出坐标的关系,进而求出正切值.【题目详解】由题意设四面体的棱长为,设为的中点,以为坐标原点,以为轴,以为轴,过垂直于面的直线为轴,建立如图所示的空间直角坐标系,则可得,,取的三等分点、如图,则,,,,所以、、、、,由题意设,,和都是等边三角形,为的中点,,,,平面,为平面的一个法向量,因为与平面所成角为定值,则,由题意可得,因为的轨迹为一段抛物线且为定值,则也为定值,,可得,此时,则,.故选:B.【题目点拨】考查线面所成的角的求法,及正切值为定值时的情况,属于中等题.7、C【解题分析】
对于①中,根据指数幂的运算性质和不等式的性质,可判定值正确的;对于②中,构造新函数,利用导数得到函数为单调递增函数,进而得到,即可判定是错误的;对于③中,构造新函数,利用导数求得函数的最大值为,进而得到,即可判定是正确的.【题目详解】由题意,对于①中,由,可得,根据不等式的性质,可得成立,所以是正确的;对于②中,设函数,则,所以函数为单调递增函数,因为,则又由,所以,即,所以②不正确;对于③中,设函数,则,当时,,函数单调递增,当时,,函数单调递减,所以当时,函数取得最大值,最大值为,所以,即,即,所以是正确的.故选:C.【题目点拨】本题主要考查了不等式的性质,以及导数在函数中的综合应用,其中解答中根据题意,合理构造新函数,利用导数求得函数的单调性和最值是解答的关键,着重考查了构造思想,以及推理与运算能力,属于中档试题.8、B【解题分析】
图像分析采用排除法,利用奇偶性判断函数为奇函数,再利用特值确定函数的正负情况。【题目详解】,故奇函数,四个图像均符合。当时,,,排除C、D当时,,,排除A。故选B。【题目点拨】图像分析采用排除法,一般可供判断的主要有:奇偶性、周期性、单调性、及特殊值。9、A【解题分析】
由余弦公式的二倍角可得,,再由诱导公式有,所以【题目详解】∵∴由余弦公式的二倍角展开式有又∵∴故选:A【题目点拨】本题考查了学生对二倍角公式的应用,要求学生熟练掌握三角函数中的诱导公式,属于简单题10、B【解题分析】
根据函数的奇偶性及题设中关于与关系,转换成关于的关系式,通过变形求解出的周期,进而算出.【题目详解】为上的奇函数,,而函数是上的偶函数,,,故为周期函数,且周期为故选:B【题目点拨】本题主要考查了函数的奇偶性,函数的周期性的应用,属于基础题.11、D【解题分析】
由题意利用两个向量坐标形式的运算法则,两个向量平行、垂直的性质,得出结论.【题目详解】∵向量(1,﹣2),(3,﹣1),∴和的坐标对应不成比例,故、不平行,故排除A;显然,•3+2≠0,故、不垂直,故排除B;∴(﹣2,﹣1),显然,和的坐标对应不成比例,故和不平行,故排除C;∴•()=﹣2+2=0,故⊥(),故D正确,故选:D.【题目点拨】本题主要考查两个向量坐标形式的运算,两个向量平行、垂直的性质,属于基础题.12、C【解题分析】
把已知等式变形,再由复数代数形式的乘除运算化简得答案.【题目详解】由(1+i)z=|3+4i|,得z,∴z的虚部为.故选C.【题目点拨】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
由程序中的变量、各语句的作用,结合流程图所给的顺序,模拟程序的运行,即可得到答案.【题目详解】根据题中的程序框图可得:,执行循环体,,不满足条件,执行循环体,,此时,满足条件,退出循环,输出的值为.故答案为:【题目点拨】本题主要考查了程序和算法,依次写出每次循环得到的,的值是解题的关键,属于基本知识的考查.14、【解题分析】
将三棱锥补成长方体,设,,,设三棱锥的外接球半径为,求得的值,然后利用球体表面积公式可求得结果.【题目详解】将三棱锥补成长方体,设,,,设三棱锥的外接球半径为,则,由勾股定理可得,上述三个等式全部相加得,,因此,三棱锥的外接球面积为.故答案为:.【题目点拨】本题考查三棱锥外接球表面积的计算,根据三棱锥对棱长相等将三棱锥补成长方体是解答的关键,考查推理能力,属于中等题.15、.【解题分析】
先求圆的半径,四边形的最小面积,转化为的最小值为,求出切线长的最小值,再求的距离也就是圆心到直线的距离,可解得的取值范围,利用几何概型即可求得概率.【题目详解】由圆的方程得,所以圆心为,半径为,四边形的面积,若四边形的最小面积,所以的最小值为,而,即的最小值,此时最小为圆心到直线的距离,此时,因为,所以,所以的概率为.【题目点拨】本题考查直线与圆的位置关系,及与长度有关的几何概型,考查了学生分析问题的能力,难度一般.16、55【解题分析】
根据该For语句的功能,可得,可得结果【题目详解】根据该For语句的功能,可得则故答案为:55【题目点拨】本题考查For语句的功能,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解题分析】
(1)根据条件可得,进而得到,即可得到椭圆方程;(2)设直线的方程为,联立,分别表示出直线和直线斜率,相加利用根与系数关系即可得到.【题目详解】解:(1)圆与有且仅有两个交点且都在轴上,所以,又,,解得,故椭圆的方程为;(2)设直线的方程为,联立,整理可得,则,解得,设点,,则,,所以,故直线与直线的斜率互为相反数.【题目点拨】本题考查直线与椭圆的位置关系,涉及椭圆的几何性质,关键是求出椭圆的标准方程,属于中档题.18、(1);(2)【解题分析】
(1)由向量平行的坐标表示、正弦定理边化角和两角和差正弦公式可化简求得,进而得到;(2)利用两角和差余弦公式、二倍角和辅助角公式化简函数为,根据的范围可确定的范围,结合正弦函数图象可确定所求函数的值域.【题目详解】(1),,由正弦定理得:,即,,,,又,.(2)在锐角中,,..,,,,函数的值域为.【题目点拨】本题考查三角恒等变换、解三角形和三角函数性质的综合应用问题;涉及到共线向量的坐标表示、利用三角恒等变换公式化简求值、正弦定理边化角的应用、正弦型函数值域的求解等知识.19、(1)点M的轨迹C的方程为,轨迹C是以,为焦点,长轴长为4的椭圆(2)【解题分析】
(1)设,根据可求得,代入圆的方程可得所求轨迹方程;根据轨迹方程可知轨迹是以,为焦点,长轴长为的椭圆;(2)设,与椭圆方程联立,利用求得;利用韦达定理表示出与,根据平行四边形和向量的坐标运算求得,消去后得到轨迹方程;根据求得的取值范围,进而得到最终结果.【题目详解】(1)设,则由知:点在圆上点的轨迹的方程为:轨迹是以,为焦点,长轴长为的椭圆(2)设,由题意知的斜率存在设,代入得:则,解得:设,,则四边形为平行四边形又∴,消去得:顶点的轨迹方程为【题目点拨】本题考查圆锥曲线中的轨迹方程的求解问题,关键是能够利用已知中所给的等量关系建立起动点横纵坐标满足的关系式,进而通过化简整理得到结果;易错点是求得轨迹方程后,忽略的取值范围.20、另一个特征值为,对应的一个特征向量【解题分析】
根据特征多项式的一个零点为3,可得,再回代到方程即可解出另一个特征值为,最后利用求特征向量的一般步骤,可求出其对应的一个特征向量.【题目详解】矩阵的特征多项式为:,是方程的一个根,,解得,即方程即,,可得另一个特征值为:,设对应的一个特征向量为:则由,得得,令,则,所以矩阵另一个特征值为,对应的一个特征向量【题目点拨】本题考查了矩阵的特征值以及特征向量,需掌握特征多项式的计算形式,属于基础题.21、(1)a=-1,b=1;(2)-1.【解题分析】(1)对求导得,根据函数的图象在处的切线为,列出方程组,即可求出的值;(2)由(1)可得,根据对任意恒成立,等价于对任意恒成立,构造,求出的单调性,由,,,,可得存在唯一的零点,使得,利用单调性可求出,即可求出的最大值.(1),.由题意知.(2)由(1)知:,∴对任意恒成立对任意恒成
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 豌豆思维课程设计待遇
- 2025年度个人自建住房施工监理服务合同样本4篇
- 砌墙工程施工方案
- 楼房加固施工方案模板
- 食工原理课程设计果蔬汁
- 年度医疗健康大数据战略市场规划报告
- 年度化学材料:灌浆料产业分析报告
- 二零二五版智能门窗系统安装与远程监控服务合同4篇
- 影视剧制作方与临时演员的2025年度聘用合同6篇
- 2025年猪圈配套设施安装服务合同124篇
- 根因分析(huangyan)课件
- 圆形蓄水池工程量及配筋Excel计算
- 浙教版初中科学八下《表示元素的符号》课件
- 总住院医师管理制度
- 八年级上册历史 第二单元 社会主义制度的建立与社会主义建设的探索
- DB31T 360-2020 住宅物业管理服务规范
- 园林绿化工程大树移植施工方案
- 应收账款最高额质押担保合同模版
- 基于新型光弹性实验技术的力学实验教学方法探索
- 诉前车辆保全申请书(5篇)
- 医院后勤保障管理组织架构图
评论
0/150
提交评论