版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年福建省厦门市竹坝学校数学九上期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,将沿着弦翻折,劣弧恰好经过圆心.如果半径为4,那么的弦长度为A. B. C. D.2.如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(﹣3,2),则该圆弧所在圆心坐标是()A.(0,0) B.(﹣2,1) C.(﹣2,﹣1) D.(0,﹣1)3.将二次函数y=ax2的图象先向下平移2个单位,再向右平移3个单位,截x轴所得的线段长为4,则a=()A.1 B. C. D.4.如图,在中,点在边上,且,,过点作,交边于点,将沿着折叠,得,与边分别交于点.若的面积为,则四边形的面积是()A. B. C. D.5.如图,平行于x轴的直线与函数,的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若的面积为4,则的值为A.8 B. C.4 D.6.下列命题中,真命题是()A.所有的平行四边形都相似 B.所有的矩形都相似 C.所有的菱形都相似 D.所有的正方形都相似7.如图,AB为⊙O的弦,AB=8,OC⊥AB于点D,交⊙O于点C,且CD=1,则⊙O的半径为()A.8.5 B.7.5 C.9.5 D.88.正方形的边长为4,若边长增加x,那么面积增加y,则y关于x的函数表达式为()A. B. C. D.9.下列事件是随机事件的是()A.打开电视,正在播放新闻 B.氢气在氧气中燃烧生成水C.离离原上草,一岁一枯荣 D.钝角三角形的内角和大于180°10.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是()A. B. C. D.二、填空题(每小题3分,共24分)11.数学课上,老师在投影屏上出示了下列抢答题,需要回答横线上符号代表的内容◎代表__________________,@代表_________________。12.已知抛物线y=x2+2kx﹣6与x轴有两个交点,且这两个交点分别在直线x=2的两侧,则k的取值范围是_____.13.等腰三角形的底角为15°,腰长为20cm,则此三角形的面积为.14.一个不透明的口袋中装有5个红球和若干个白球,他们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,估计口袋中白球有__________个.15.如图所示,矩形纸片中,,把它分割成正方形纸片和矩形纸片后,分别裁出扇形和半径最大的圆,恰好能作一个圆锥的侧面和底面,则的长为__________.
16.如图,在平面直角坐标系中,以点为圆心画圆,与轴交于;两点,与轴交于两点,当时,的取值范围是____________.17.如图,如果一只蚂蚁从圆锥底面上的点B出发,沿表面爬到母线AC的中点D处,则最短路线长为_____.18.若一个正多边形的每一个外角都等于36°,那么这个正多边形的中心角为__________度.三、解答题(共66分)19.(10分)已知:如图,在正方形ABCD中,F是AB上一点,延长CB到E,使BE=BF,连接CF并延长交AE于G.(1)求证:△ABE≌△CBF;(2)将△ABE绕点A逆时针旋转90°得到△ADH,请判断四边形AFCH是什么特殊四边形,并说明理由.20.(6分)已知:△ABC在平面直角坐标系内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是__________;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1;四边形AA2C2C的面积是__________平方单位.21.(6分)如图,在锐角△ABC中,小明进行了如下的尺规作图:①分别以点A、B为圆心,以大于12AB的长为半径作弧,两弧分别相交于点P、Q②作直线PQ分别交边AB、BC于点E、D.(1)小明所求作的直线DE是线段AB的;(2)联结AD,AD=7,sin∠DAC=17,BC=9,求AC22.(8分)如图,函数y1=﹣x+4的图象与函数(x>0)的图象交于A(m,1),B(1,n)两点.(1)求k,m,n的值;(2)利用图象写出当x≥1时,y1和y2的大小关系.23.(8分)在平面直角坐标系中,存在抛物线以及两点和.(1)求该抛物线的顶点坐标;(2)若该抛物线经过点,求此抛物线的表达式;(3)若该抛物线与线段只有一个公共点,结合图象,求的取值范围.24.(8分)如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度h(单位:米)与飞行时间t(单位:秒)之间具有函数关系,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15米时,需要多少飞行时间?(2)在飞行过程中,小球飞行高度何时达到最大?最大高度是多少?25.(10分)如图,在平面直角系中,点A在x轴正半轴上,点B在y轴正半轴上,∠ABO=30°,AB=2,以AB为边在第一象限内作等边△ABC,反比例函数的图象恰好经过边BC的中点D,边AC与反比例函数的图象交于点E.(1)求反比例函数的解析式;(2)求点E的横坐标.26.(10分)问题提出:如图所示,有三根针和套在一根针上的若干金属片,按下列规则,把金属片从一根针上全部移到另一根针上.a.每次只能移动1个金属片;b.较大的金属片不能放在较小的金属片上面.把个金属片从1号针移到3号针,最少移动多少次?问题探究:为了探究规律,我们采用一般问题特殊化的方法,先从简单的情形入手,再逐次递进,最后得出一般性结论.探究一:当时,只需把金属片从1号针移到3号针,用符号表示,共移动了1次.探究二:当时,为了避免将较大的金属片放在较小的金属片上面,我们利用2号针作为“中间针”,移动的顺序是:a.把第1个金属片从1号针移到2号针;b.把第2个金属片从1号针移到3号针;c.把第1个金属片从2号针移到3号针.用符号表示为:,,.共移动了3次.探究三:当时,把上面两个金属片作为一个整体,则归结为的情形,移动的顺序是:a.把上面两个金属片从1号针移到2号针;b.把第3个金属片从1号针移到3号针;c.把上面两个金属片从2号针移到3号针.其中(1)和(3)都需要借助中间针,用符号表示为:,,,,,,.共移动了7次.(1)探究四:请仿照前面步骤进行解答:当时,把上面3个金属片作为一个整体,移动的顺序是:___________________________________________________.(2)探究五:根据上面的规律你可以发现当时,需要移动________次.(3)探究六:把个金属片从1号针移到3号针,最少移动________次.(4)探究七:如果我们把个金属片从1号针移到3号针,最少移动的次数记为,当时如果我们把个金属片从1号针移到3号针,最少移动的次数记为,那么与的关系是__________.
参考答案一、选择题(每小题3分,共30分)1、D【分析】如果过O作OC⊥AB于D,交折叠前的AB弧于C,根据折叠后劣弧恰好经过圆心O,根据垂径定理及勾股定理即可求出AD的长,进而求出AB的长.【详解】解:如图,过O作OC⊥AB于D,交折叠前的AB弧于C,
根据折叠后劣弧恰好经过圆心O,那么可得出的是OD=CD=2,
直角三角形OAD中,OA=4,OD=2,
∴AD=∴AB=2AD=,故选:D.【点睛】本题考查了垂径定理和勾股定理的综合运用,利用好条件:劣弧折叠后恰好经过圆心O是解题的关键.2、C【解析】如图:分别作AC与AB的垂直平分线,相交于点O,则点O即是该圆弧所在圆的圆心.∵点A的坐标为(﹣3,2),∴点O的坐标为(﹣2,﹣1).故选C.3、D【分析】根据题意可以写出平移后的函数解析式,然后根据截x轴所得的线段长为4,可以求得a的值,本题得以解决.【详解】解:二次函数y=ax2的图象先向下平移2个单位,再向右平移3个单位之后的函数解析式为y=a(x﹣3)2﹣2,当y=0时,ax2﹣6ax+9a﹣2=0,设方程ax2﹣6ax+9a﹣2=0的两个根为x1,x2,则x1+x2=6,x1x2=,∵平移后的函数截x轴所得的线段长为4,∴|x1﹣x2|=4,∴(x1﹣x2)2=16,∴(x1+x2)2﹣4x1x2=16,∴36﹣4×=16,解得,a=,故选:D.【点睛】本题考查解二次函数综合题,解题关键是根据题意可以写出平移后的函数解析式.4、B【分析】由平行线的性质可得,,可设AH=5a,HP=3a,求出S△ADE=,由平行线的性质可得,可得S△FGM=2,再利用S四边形DEGF=S△DEM-S△FGM,即可得到答案.【详解】解:如图,连接AM,交DE于点H,交BC于点P,
∵DE∥BC,
∴,∴∵的面积为∴S△ADE=×32=设AH=5a,HP=3a
∵沿着折叠
∴AH=HM=5a,S△ADE=S△DEM=
∴PM=2a,
∵DE∥BC
∴
∴S△FGM=2∴S四边形DEGF=S△DEM-S△FGM=-2=
故选:B.【点睛】本题考查了折叠变换,平行线的性质,相似三角形的性质,熟练运用平行线的性质是本题的关键.5、A【解析】设,,根据反比例函数图象上点的坐标特征得出,根据三角形的面积公式得到,即可求出.【详解】轴,,B两点纵坐标相同,设,,则,,,,故选A.【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.6、D【解析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】所有正方形都相似,故D符合题意;故选D.【点睛】此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7、A【解析】根据垂径定理得到直角三角形,求出的长,连接,得到直角三角形,然后在直角三角形中计算出半径的长.【详解】解:如图所示:连接,则长为半径.∵于点,∴,∵在中,,∴,∴,故答案为A.【点睛】本题主要考查垂径定理和勾股定理.根据垂径定理“垂直于弦的直径平分弦,并且平分弦所对的弧”得到一直角边,利用勾股定理列出关于半径的等量关系是解题关键.8、C【分析】加的面积=新正方形的面积-原正方形的面积,把相关数值代入化简即可.【详解】解:∵新正方形的边长为x+4,原正方形的边长为4,∴新正方形的面积为(x+4)2,原正方形的面积为16,∴y=(x+4)2-16=x2+8x,故选:C.【点睛】本题考查列二次函数关系式;得到增加的面积的等量关系是解决本题的关键.9、A【分析】根据随机事件的意义,事件发生的可能性大小判断即可.【详解】解:A、打开电视,正在播放新闻,是随机事件;B、氢气在氧气中燃烧生成水,是必然事件;C、离离原上草,一岁一枯荣,是必然事件;D、钝角三角形的内角和大于180°,是不可能事件;故选:A.【点睛】本题考查可随机事件的意义,正确理解随机事件的意义是解决本题的关键.10、D【分析】由于10件产品中有2件次品,所以从10件产品中任意抽取1件,抽中次品的概率是.【详解】解:.故选:D.【点睛】本题考查的知识点是用概率公式求事件的概率,根据题目找出全部情况的总数以及符合条件的情况数目是解此题的关键.二、填空题(每小题3分,共24分)11、∠EFC内错角【分析】根据图形,结合三角形外角的性质、等量代换、平行线的判定即可将解答补充完整.【详解】证明:延长BE交DC于点F,则(三角形的外角等于与它不相邻的两个内角之和).又,得,故(内错角相等,两直线平行).故答案为:∠EFC;内错角.【点睛】本题考查了三角形外角的性质、平行线的判定,通过作辅助线,构造内错角证明平行,及有效地进行等量代换是证明的关键.12、【分析】由抛物线y=x2+2kx﹣6可得抛物线开口方向向上,根据抛物线与x轴有两个交点且这两个交点分别在直线x=2的两侧可得:当x=2时,抛物线在x轴下方,即y<1.【详解】解:∵y=x2+2kx﹣6与x轴有两个交点,两个交点分别在直线x=2的两侧,∴当x=2时,y<1.∴4+4k﹣6<1解得:k<;∴k的取值范围是k<,故答案为:k<.【点睛】本题主要考查二次函数图象性质,解决本题的关键是要熟练掌握二次函数图象的性质.13、100【解析】试题分析:先作出图象,根据含30°角的直角三角形的性质求出腰上的高,再根据三角形的面积公式即可求解.如图,∵∠B=∠C=15°∴∠CAD=30°∴CD=AC=10∴三角形的面积考点:本题考查的是三角形外角的性质,含30°角的直角三角形的性质点评:解答本题的关键是熟练掌握三角形的一个外角等于与它不相邻的两个内角的和;30°角的所对的直角边等于斜边的一半.14、15【分析】由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.【详解】解:设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴,解得x=15,检验:x=15是原方程的根,∴白球的个数为15个,故答案为:15.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出和分式方程的解法解题关键.15、cm.【分析】设AB=xcm,则DE=(6-x)cm,根据扇形的弧长等于圆锥底面圆的周长列出方程,求解即可.【详解】解:设AB=xcm,则DE=(6-x)cm,
根据题意,得解得x=1.
故选:1cm.【点睛】本题考查了圆锥的计算,矩形的性质,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.16、【解析】作ME⊥CD于E,MF⊥AB于F,连接MA、MC.当CD=6和CD=时在中求出半径MC,然后在中可求的值,于是范围可求.【详解】解:如图1,当CD=6时,作ME⊥CD于E,MF⊥AB于F,连接MA、MC,∵,∴ME=4,MF=3,∵ME⊥CD,CD=6,∴CE=3,∴,∴MA=MC=5,∵MF⊥AB,∴==,如图2,当CD=时,作ME⊥CD于E,MF⊥AB于F,连接MA、MC,∵,∴ME=4,MF=3,∵ME⊥CD,CD=,∴CE=,∴,∴MA=MC=8,∵MF⊥AB,∴==,综上所述,当时,.故答案是:.【点睛】本题考查了三角函数在坐标系和圆中的应用,作辅助线构造直角三角形利用垂径定理求出半径是解题的关键.17、3.【分析】将圆锥侧面展开,根据“两点之间线段最短”和勾股定理,即可求得蚂蚁的最短路线长.【详解】如图将圆锥侧面展开,得到扇形ABB′,则线段BF为所求的最短路线.设∠BAB′=n°.∵,∴n=120,即∠BAB′=120°.∵E为弧BB′中点,∴∠AFB=90°,∠BAF=60°,Rt△AFB中,∠ABF=30°,AB=6∴AF=3,BF==3,∴最短路线长为3.故答案为:3.【点睛】本题考查“化曲面为平面”求最短路径问题,属中档题.18、1【分析】根据题意首先由多边形外角和定理求出正多边形的边数n,再由正多边形的中心角=,即可得出答案.【详解】解:∵正多边形的每一个外角都等于1°,∴正多边形的边数为:,∴这个正多边形的中心角为:.故答案为:1.【点睛】本题考查正多边形的性质和多边形外角和定理以及正多边形的中心角的计算方法,熟练掌握正多边形的性质并根据题意求出正多边形的边数是解决问题的关键.三、解答题(共66分)19、(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)由于四边形ABCD是正方形,所以AB=CB=DC,因为AB∥CD,∠CBA=∠ABE,从而得证.(2)根据旋转的性质可知△ABE≌△ADH,从而可证AF=CH,然后利用AB∥CD
即可知四边形AFCH是平行四边形.试题解析:(1)证明:∴,AB//CD∴∴在△ABE和△CBF中∴△ABE≌△CBF(SAS)(2)答:四边形AFCH是平行四边形理由:∵△ABE绕点A逆时针旋转90°得到△ADH∴△ABE≌△ADH∴BE=DH又∵BE=BF(已知)∴BF=DH(等量代换)又∵AB=CD(由(1)已证)∴AB-BF=CD-DH即AF=CH又∵AB//CD即AF//CH∴四边形AFCH是平行四边形20、(1)画图见解析,(2,–2);(2)画图见解析,7.1.【解析】(1)将△ABC向下平移4个单位长度得到的△A1B1C1,如图所示,找出所求点坐标即可;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,如图所示,找出所求点坐标即可;根据四边形的面积等于两个三角形面积之和解答即可.【详解】(1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,﹣2);(2)如图所示,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,四边形AA2C2C的面积是=12故答案为:(1)(2,﹣2);(2)7.1.【点睛】本题考查了作图﹣位似变换与平移变换,熟练掌握位似变换与平移变换的性质是解答本题的关键.21、(1)线段AB的垂直平分线(或中垂线);(2)AC=53.【解析】(1)垂直平分线:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(2)根据题意垂直平分线定理可得AD=BD,得到CD=2,又因为已知sin∠DAC=17,故可过点D作AC垂线,求得DF=1,利用勾股定理可求得AF,CF,即可求出AC长【详解】(1)小明所求作的直线DE是线段AB的垂直平分线(或中垂线);故答案为线段AB的垂直平分线(或中垂线);(2)过点D作DF⊥AC,垂足为点F,如图,∵DE是线段AB的垂直平分线,∴AD=BD=7∴CD=BC﹣BD=2,在Rt△ADF中,∵sin∠DAC=DFAD∴DF=1,在Rt△ADF中,AF=72在Rt△CDF中,CF=22∴AC=AF+CF=43【点睛】本题考查了垂直平分线的尺规作图方法,三角函数和勾股定理求线段长度,解本题的关键是充分利用中垂线,将已知条件与未知条件结合起来解题.22、(1)m=3,k=3,n=3;(1)当1<x<3时,y1>y1;当x>3时,y1<y1;当x=1或x=3时,y1=y1.【分析】(1)把A与B坐标代入一次函数解析式求出m与n的值,将A坐标代入反比例解析式求出k的值;(1)利用图像,可知分x=1或x=3,1<x<3与x>3三种情况判断出y1和y1的大小关系即可.【详解】(1)把A(m,1)代入y=-x+4得:1=﹣m+4,即m=3,∴A(3,1),把A(3,1)代入y=得:k=3,把B(1,n)代入一次函数解析式得:n=﹣1+4=3;(1)∵A(3,1),B(1,3),∴根据图像得当1<x<3时,y1>y1;当x>3时,y1<y1;当x=1或x=3时,y1=y1.23、(1)(0,2);(2);(3)m=2或.【分析】(1)是顶点式,可得到结论;
(2)把A点坐标代入得方程,于是得到结论;
(3)分两种情况:当抛物线开口向上或向下时,分别画出图形,找到临界位置关系,求出m的值,再进行分析变化趋势可得到结论.【详解】(1)是顶点式,顶点坐标为;(2)∵抛物线经过点,
∴m=9m+2,
解得:,∴(3)如图1,当抛物线开口向上时,抛物线顶点在线段上时,;当m>2时,直线x=1交抛物线于点(1,m+2),交点位于点B上方,所以此时线段与抛物线一定有两个交点,不符合题意;如图2,当抛物线开口向下时,抛物线顶过点时,;直线x=-3交抛物线于点(-3,9m+2),当时,9m+2<m,交点位于点A下方,直线x=1交抛物线于点(1,m+2),交点位于点B上方,所以此时线段与抛物线一定有且只有一个交点,符合题意;综上所述,当或时,抛物线与线段只有一个公共点.【点睛】本题考查了抛物线的性质,直线与抛物线的位置关系,考虑特殊情况是关键,考查了数形结合的数学思想.24、(1)飞行时间为1s或3s时,飞行高度是15m;(2)飞行时间为2s时,飞行高度最大为1m【分析】(1)把h=15直接代入,解关于t的一元二次方程即可;(2)将进行配方变形,即可得出答案.【详解】解:(1)当h=15时,15=-5t2+1t,化简得:t2-4t+3=0,解得:t1=1,t2=3,∴飞行时间为1s或3s时,飞行高度是15m.(2)h=-5(t2-4t)=-5(t2-4t+4-4)=-5(t-2)2+1,∴当t=2时,h最大=1.∴飞行时间为2s时,飞行高度最大为1m.【点睛】本题考查的知识点是二次函数的实际应用,掌握二次函数的图象及其性质是解此题的关键.25、(1);(2).【分析】(1)直接利用等边三角形的性质结合举行的判定方法得出D点坐标进而得出答案;(2)首先求出AC的解析式进而将两函数联立求出E点坐标即可.【详解】解:(1)∵∠AB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机场工程供货施工合同范本
- 教育设施建设基本规范
- 2024年促销活动合作协议范本
- 农业生产化粪池施工合同
- 早教中心幼教聘用协议样本
- 艺术馆通风管道改造协议
- 工程项目投标保密承诺书
- 员工试用期合同范文
- 税务筹划在物流行业中的应用
- 高空交通运输安全协议
- 中医药文化知识考核试题及答案
- 电影知识竞赛试题与答案
- 新苏教版2022-2023五年级科学上册《专项学习-像工程师那样》课件
- 电子物证专业考试复习题库(含答案)
- 毕业论文-电力变压器设计
- 慢性心力衰竭2021完整版课件
- 老年大学课件
- 小学综合实践四年级上册第4单元《主题活动三:我们10岁了》教材分析
- 五年级上册数学教案-平行四边形的认识- 沪教版
- 口腔诊所工作流程图
- 城市经济结构与城市经济增长
评论
0/150
提交评论