版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年甘肃省陇南市第五中学数学九上期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如果,那么下列各式中不成立的是()A.; B.; C.; D.2.抛物线经过平移得到抛物线,平移过程正确的是()A.先向下平移个单位,再向左平移个单位B.先向上平移个单位,再向右平移个单位C.先向下平移个单位,再向右平移个单位D.先向上平移个单位,再向左平移个单位.3.下列事件中,必然事件是()A.抛一枚硬币,正面朝上B.打开电视频道,正在播放《今日视线》C.射击运动员射击一次,命中10环D.地球绕着太阳转4.点A(﹣5,4)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.⊙O的半径为8,圆心O到直线l的距离为4,则直线l与⊙O的位置关系是A.相切 B.相交 C.相离 D.不能确定6.若2是关于方程x2﹣5x+c=0的一个根,则这个方程的另一个根是()A.﹣3 B.3 C.﹣6 D.67.在Rt△ABC中,AB=6,BC=8,则这个三角形的内切圆的半径是()A.5 B.2 C.5或2 D.2或-18.如图,是由等腰直角经过位似变换得到的,位似中心在轴的正半轴,已知,点坐标为,位似比为,则两个三角形的位似中心点的坐标是()A. B. C. D.9.如图是一根电线杆在一天中不同时刻的影长图,试按其天中发生的先后顺序排列,正确的是()A.①②③④ B.④①③② C.④②③① D.④③②①10.国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路.永州市2016年底大约有贫困人口13万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为,根据题意列方程得()A. B. C. D.11.关于的方程有实数根,则满足()A. B.且 C.且 D.12.已知反比例函数y=的图象经过P(﹣2,6),则这个函数的图象位于()A.第二,三象限 B.第一,三象限C.第三,四象限 D.第二,四象限二、填空题(每题4分,共24分)13.如图所示,小明在探究活动“测旗杆高度”中,发现旗杆的影子恰好落在地面和教室的墙壁上,测得,,而且此时测得高的杆的影子长,则旗杆的高度约为__________.14.一只不透明的袋子中装有红球和白球共个,这些球除了颜色外都相同,校课外学习小组做摸球试验,将球搅匀后任意摸出一个球,记下颜色后放回、搅匀,通过多次重复试验,算得摸到红球的频率是,则袋中有__________.15.一元二次方程的根是_____.16.如图,边长为2的正方形,以为直径作,与相切于点,与交于点,则的面积为__________.17.如图所示,已知中,,边上的高,为上一点,,交于点,交于点,设点到边的距离为.则的面积关于的函数图象大致为__________.18.如图是二次函数的部分图象,由图象可知不等式的解集是_______.三、解答题(共78分)19.(8分)如图,一艘船由A港沿北偏东65°方向航行km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向.求:(1)∠C的度数;(2)A,C两港之间的距离为多少km.20.(8分)定义:在平面直角坐标系中,抛物线()与直线交于点、(点在点右边),将抛物线沿直线翻折,翻折前后两抛物线的顶点分别为点、,我们将两抛物线之间形成的封闭图形称为惊喜线,四边形称为惊喜四边形,对角线与之比称为惊喜度(Degreeofsurprise),记作.(1)如图(1)抛物线沿直线翻折后得到惊喜线.则点坐标,点坐标,惊喜四边形属于所学过的哪种特殊平行四边形?,为.(2)如果抛物线()沿直线翻折后所得惊喜线的惊喜度为1,求的值.(3)如果抛物线沿直线翻折后所得的惊喜线在时,其最高点的纵坐标为16,求的值并直接写出惊喜度.21.(8分)如图,在△ABC中,DE∥BC,,M为BC上一点,AM交DE于N.(1)若AE=4,求EC的长;(2)若M为BC的中点,S△ABC=36,求S△ADN的值.22.(10分)我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)王老师采取的调查方式是(填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共件,其中b班征集到作品件,请把图2补充完整;(2)王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率.23.(10分)如图,抛物线y1=a(x﹣1)2+4与x轴交于A(﹣1,0).(1)求该抛物线所表示的二次函数的表达式;(2)一次函数y2=x+1的图象与抛物线相交于A,C两点,过点C作CB垂直于x轴于点B,求△ABC的面积.24.(10分)解方程:(l)(2)(配方法).25.(12分)为了改善生活环境,近年来,无为县政府不断加大对城市绿化的资金投入,使全县绿地面积不断增加.从2016年底到2018年底,我县绿地面积变化如图所示,求我县绿地面积的年平均增长率.26.综合与实践:如图,已知中,.(1)实践与操作:作的外接圆,连结,并在图中标明相应字母;(尺规作图,保留作图痕迹,不写作法)(2)猜想与证明:若,求扇形的面积.
参考答案一、选择题(每题4分,共48分)1、D【解析】试题分析:由题意分析可知:A中,,故不选A;B中,,故不选;C中,;D中,,故选D考点:代数式的运算点评:本题属于对代数式的基本运算规律和代数式的代入分析的求解2、D【分析】先利用顶点式得到抛物线的顶点坐标为,抛物线的顶点坐标为,然后利用点平移的规律确定抛物线的平移情况.【详解】解:抛物线的顶点坐标为,抛物线的顶点坐标为,而点先向上平移2个单位,再向左平移3个单位后可得点,抛物线先向上平移2个单位,再向左平移3个单位后可得抛物线.故选:.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.3、D【分析】根据事件发生的可能性大小及必然事件的定义即可作出判断.【详解】解:A、抛一枚硬币,正面朝上是随机事件;B、打开电视频道,正在播放《今日视线》是随机事件;C、射击运动员射击一次,命中10环是随机事件;D、地球绕着太阳转是必然事件;故选:D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定会发生的事件.不可能事件是指在一定条件下,一定不会发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4、B【分析】根据象限内点的坐标特点即可解答.【详解】点A(﹣5,4)所在的象限是第二象限,故选:B.【点睛】此题考查象限内点的坐标,熟记每个象限及坐标轴上点的坐标特点是解题的关键.5、B【分析】根据圆O的半径和圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.【详解】∵⊙O的半径为8,圆心O到直线L的距离为4,
∵8>4,即:d<r,
∴直线L与⊙O的位置关系是相交.
故选B.6、B【分析】根据一元二次方程根与系数的关系即可得.【详解】设这个方程的另一个根为,由一元二次方程根与系数的关系得:,解得,故选:B.【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题关键.7、D【解析】分AC为斜边和BC为斜边两种情况讨论.根据切线定理得过切点的半径垂直于三角形各边,利用面积法列式求半径长.【详解】第一情况:当AC为斜边时,如图,设⊙O是Rt△ABC的内切圆,切点分别为D,E,F,连接OC,OA,OB,∴OD⊥AC,OE⊥BC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,,∵,∴,∴,∴r=2.第二情况:当BC为斜边时,如图,设⊙O是Rt△ABC的内切圆,切点分别为D,E,F,连接OC,OA,OB,∴OD⊥BC,OE⊥AC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,,∵,∴,∴,∴r=.故选:D.【点睛】本题考查了三角形内切圆半径的求法及勾股定理,依据圆的切线性质是解答此题的关键.等面积法是求高度等线段长的常用手段.8、A【分析】先确定G点的坐标,再结合D点坐标和位似比为1:2,求出A点的坐标;然后再求出直线AG的解析式,直线AG与x的交点坐标,即为这两个三角形的位似中心的坐标..【详解】解:∵△ADC与△EOG都是等腰直角三角形∴OE=OG=1∴G点的坐标分别为(0,-1)∵D点坐标为D(2,0),位似比为1:2,∴A点的坐标为(2,2)∴直线AG的解析式为y=x-1∴直线AG与x的交点坐标为(,0)∴位似中心P点的坐标是.故答案为A.【点睛】本题考查了位似中心的相关知识,掌握位似中心是由位似图形的对应项点的连线的交点是解答本题的关键.9、B【分析】北半球而言,从早晨到傍晚影子的指向是:西−西北−北−东北−东,影长由长变短,再变长.【详解】根据题意,太阳是从东方升起,故影子指向的方向为西方.然后依次为西北−北−东北−东,即④①③②故选:B.【点睛】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚影子的指向是:西−西北−北−东北−东,影长由长变短,再变长.10、B【分析】根据等量关系:2016年贫困人口×(1-下降率=2018年贫困人口,把相关数值代入即可.【详解】设这两年全省贫困人口的年平均下降率为,根据题意得:,故选:B.【点睛】本题考查由实际问题抽象出一元二次方程,得到2年内变化情况的等量关系是解决本题的关键.11、A【分析】分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a的范围.【详解】当a=5时,原方程变形为-4x-1=0,解得x=-;当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,所以a的取值范围为a≥1.故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.12、D【分析】将点P(-2,6)代入反比例函数求出k,若k>0,则函数的图象位于第一,三象限;若k<0,则函数的图象位于第二,四象限;【详解】∵反比例函数的图象经过P(﹣2,6),∴6=,∴k=-12,即k<0,这个函数的图象位于第二、四象限;故选D.【点睛】本题主要考查了反比例函数的图像性质,掌握反比例函数的图像是解题的关键.二、填空题(每题4分,共24分)13、1【分析】作BE⊥AC于E,可得矩形CDBE,利用同一时刻物高与影长的比一定得到AE的长度,加上CE的长度即为旗杆的高度【详解】解:作BE⊥AC于E,∵BD⊥CD于D,AC⊥CD于C,∴四边形CDBE为矩形,∴BE=CD=1m,CE=BD=2m,∵同一时刻物高与影长所组成的三角形相似,∴,即,解得AE=2(m),∴AC=AE+EC=2+2=1(m).故答案为:1.【点睛】本题考查相似三角形的应用;作出相应辅助线得到矩形是解决本题的难点;用到的知识点为:同一时刻物高与影长的比一定.14、1【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】设袋中有x个红球.
由题意可得:,解得:,
故答案为:1.【点睛】本题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.15、【分析】利用因式分解法把方程化为x-3=0或x-2=0,然后解两个一次方程即可.【详解】解:或,所以.故答案为.【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.16、【分析】运用切线长定理和勾股定理求出DF,进而完成解答.【详解】解:∵与相切于点,与交于点∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt△CDF中,由勾股定理得:DF2=CF2-CD2,即(2-x)2=(2+x)2-22解得:x=,则DF=∴的面积为=故答案为.【点睛】本题考查了切线长定理和勾股定理等知识点,根据切线长定理得到相等的线段是解答本题的关键.17、抛物线y=-x2+6x.(0<x<6)的部分.【分析】可过点A向BC作AH⊥BC于点H,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案.【详解】解:过点A向BC作AH⊥BC于点H,∵∴△AEF∽△ABC∴即,∴y=×2(6-x)x=-x2+6x.(0<x<6)∴该函数图象是抛物线y=-x2+6x.(0<x<6)的部分.故答案为:抛物线y=-x2+6x.(0<x<6)的部分.【点睛】此题考查相似三角形的判定和性质,根据几何图形的性质确定函数的图象能力.要能根据函数解析式及其自变量的取值范围分析得出所对应的函数图像的类型和所需要的条件,结合实际意义分析得解.18、【解析】求方程的解即是求函数图象与x轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x轴的一个交点为5,所以,另一交点为2-3=-1.∴x1=-1,x2=5.∴不等式的解集是.故答案为【点睛】要了解二次函数性质与图像,由于图像的开口向下,所以,有两个交点,知一易求另一个,本题属于基础题.三、解答题(共78分)19、(1)∠C=60°(2)AC=【分析】(1)根据方位角的概念确定∠ACB=40°+20°=60;(2)AB=30,过B作BE⊥AC于E,解直角三角形即可得到结论.【详解】解:(1)如图,在点C处建立方向标根据题意得,AF∥CM∥BD∴∠ACM=∠FAC,∠BCM=∠DBC∴∠ACB=∠ACM+∠BCM=40°+20°=60°,(2)∵AB=30,过B作BE⊥AC于E,∴∠AEB=∠CEB=90°,在Rt△ABE中,∵∠ABE=45°,AB=30,∴AE=BE=AB=30km,在Rt△CBE中,∵∠ACB=60°,∴CE=BE=10km,
∴AC=AE+CE=30+10,∴A,C两港之间的距离为(30+10)km,【点睛】本题考查了解直角三角形的应用,方向角问题,三角形的内角和,是基础知识比较简单.20、(1);;菱形;2;(2);(3),或,.【分析】(1)当y=0时可求出点A坐标为,B坐标为,AB=4,根据四边形四边相等可知该四边形为菱形,由可知抛物线顶点坐标为(1,-4),所以B,AB=8,即可得到为2;(2)惊喜度为1即,利用抛物线解析式分别求出各点坐标,从而得到AC和BD的长,计算即可求出m;(3)先求出顶点坐标,对称轴为直线,讨论对称轴直线是否在这个范围内,分3中情况分别求出最大值为16是m的值.【详解】解:(1)在抛物线上,当y=0时,,解得,,,∵点在点右边,∴A点的坐标为,B点的坐标为;∴AB=4,∵∴顶点B的坐标为,由于BD关于x轴对称,∴D的坐标为,∴BD=8,通过抛物线的对称性得到AB=BC,又由于翻折,得到AB=BC=AD=CD,∴惊喜四边形为菱形;;(2)由题意得:的顶点坐标,解得:,∴∴,(3)抛物线的顶点为,对称轴为直线:①即时,,得∴②即时,时,对应惊喜线上最高点的函数值,∴(舍去);∴③即时形成不了惊喜线,故不存在综上所述,,或,【点睛】本题主要考查了二次函数的综合问题,需要熟练掌握二次函数的基础内容:顶点坐标、对称轴以及各交点的坐标求法.21、(1)2(2)8【解析】(1)首先根据DE∥BC得到△ADE和△ABC相似,求出AC的长度,然后根据CE=AC-AE求出长度;(2)根据△ABC的面积求出△ABM的面积,然后根据相似三角形的面积比等于相似比的平方求出△ADN的面积.【详解】解:(1)∵DE∥BC∴△ADE∽△ABC∴∵AE=4∴AC=6∴EC=AC-AE=6-4=2(2)∵△ABC的面积为36,点M为BC的中点∴△ABM的面积为:36÷2=18∵△ADN和△ABM的相似比为∴∴=8考点:相似三角形的判定与性质22、(1)抽样调查;12;3;(2)60;(3).【解析】试题分析:(1)根据只抽取了4个班可知是抽样调查,根据C在扇形图中的角度求出所占的份数,再根据C的人数是5,列式进行计算即可求出作品的件数,然后减去A、C、D的件数即为B的件数;(2)求出平均每一个班的作品件数,然后乘以班级数14,计算即可得解;(3)画出树状图或列出图表,再根据概率公式列式进行计算即可得解.试题解析:(1)抽样调查,所调查的4个班征集到作品数为:5÷=12件,B作品的件数为:12﹣2﹣5﹣2=3件,故答案为抽样调查;12;3;把图2补充完整如下:(2)王老师所调查的四个班平均每个班征集作品=12÷4=3(件),所以,估计全年级征集到参展作品:3×14=42(件);(3)画树状图如下:列表如下:共有20种机会均等的结果,其中一男一女占12种,所以,P(一男一女)==,即恰好抽中一男一女的概率是.考点:1.条形统计图;2.用样本估计总体;3.扇形统计图;4.列表法与树状图法;5.图表型.23、(1)y1=﹣(x﹣1)2+4;(2).【分析】(1)解答时先根据已知条件求出二次函数的表达式,(2)根据一次函数与抛物线相交的关系算出交点坐标,就可以算出三角形的面积【详解】(1)∵抛物线y1=a(x﹣1)2+4与x轴交于A(﹣1,0),∴0=a(﹣1﹣1)2+4,得a=﹣1,∴y1=﹣(x﹣1)2+4,即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酒水买卖合同格式
- 银行个人贷款合同样本
- 阅读大卫科波菲尔的英语感悟
- 防水工程分包施工合同
- 防锈漆原料交易条件
- 零星工程劳务合作协议
- 食品采购框架合同范例
- 食品添加剂销售进出口销售购销合同
- 饲料添加剂采购合同的履行与监管
- 高一英语作文背诵技巧解析
- 科普版 小学英语 五年级上册 Lesson7测试卷(含答案)
- 自愿放弃改造协议书
- 国开(浙江)2024年《领导科学与艺术》形成性考核作业1-4答案
- 省教育科学规划课题设计论证:师范院校弘扬教育家精神的实践研究
- 2024年沈阳职业技术学院单招职业适应性测试题库附答案
- 线性代数智慧树知到期末考试答案章节答案2024年南京理工大学
- 寻访家乡名人 主题课件 《综合实践活动》七年级上册
- 第十二章 全等三角形 作业设计-2023-2024学年人教版八年级数学上册
- 电大财务大数据分析编程作业2
- 叉车工安全技术交底书
- 市场营销职业规划生涯发展报告
评论
0/150
提交评论