2023-2024学年广东省深圳市坪山区数学九年级第一学期期末质量检测试题含解析_第1页
2023-2024学年广东省深圳市坪山区数学九年级第一学期期末质量检测试题含解析_第2页
2023-2024学年广东省深圳市坪山区数学九年级第一学期期末质量检测试题含解析_第3页
2023-2024学年广东省深圳市坪山区数学九年级第一学期期末质量检测试题含解析_第4页
2023-2024学年广东省深圳市坪山区数学九年级第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年广东省深圳市坪山区数学九年级第一学期期末质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有()A.5个 B.15个 C.20个 D.35个2.已知反比例函数y=,下列结论中不正确的是()A.图象经过点(﹣1,﹣1) B.图象在第一、三象限C.当x>1时,y>1 D.当x<0时,y随着x的增大而减小3.若两个相似三角形的周长之比为1∶4,则它们的面积之比为()A.1∶2 B.1∶4 C.1∶8 D.1∶164.关于的一元二次方程有实数根,则的取值范围是()A. B.且 C. D.且5.若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60° B.90° C.120° D.180°6.已知如图:为估计池塘的宽度,在池塘的一侧取一点,再分别取、的中点、,测得的长度为米,则池塘的宽的长为()A.米 B.米 C.米 D.米7.一副三角板如图放置,它们的直角顶点、分别在另一个三角板的斜边上,且,则的度数为()A. B. C. D.8.如图,某小区规划在一个长50米,宽30米的矩形场地ABCD上,修建三条同样宽的道路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若使每块草坪面积都为178平方米,设道路宽度为x米,则()A.(50﹣2x)(30﹣x)=178×6B.30×50﹣2×30x﹣50x=178×6C.(30﹣2x)(50﹣x)=178D.(50﹣2x)(30﹣x)=1789.某林业部门要考察某幼苗的成活率,于是进行了试验,下表中记录了这种幼苗在一定条件下移植的成活情况,则下列说法不正确的是()移植总数400150035007000900014000成活数369133532036335807312628成活的频率09230.89009150.9050.8970.902A.由此估计这种幼苗在此条件下成活的概率约为0.9B.如果在此条件下再移植这种幼苗20000株,则必定成活18000株C.可以用试验次数累计最多时的频率作为概率的估计值D.在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率10.方程x2﹣5=0的实数解为()A. B. C. D.±5二、填空题(每小题3分,共24分)11.抛物线y=2x2+4x-1向右平移_______个单位,经过点P(4,5).12.在Rt△ABC中,∠C=90°,如果tan∠A=,那么cos∠B=_____.13.在一个不透明的袋子中装有除颜色外完全相同的3个白球、若干红球,从中随机摸取1个球,摸到红球的概率是,则这个袋子中有红球_____个.14.计算:sin30°=_____.15.圆锥的侧面展开的面积是12πcm2,母线长为4cm,则圆锥的底面半径为_________cm.16.四边形ABCD是☉O的内接四边形,,则的度数为____________.17.如图,点O是△ABC的内切圆的圆心,若∠A=100°,则∠BOC为_____.18.圆弧形蔬菜大棚的剖面如图,已知AB=16m,半径OA=10m,OC⊥AB,则中柱CD的高度为_________m.三、解答题(共66分)19.(10分)某政府工作报告中强调,2019年着重推进乡村振兴战略,做优做响湘莲等特色农产品品牌.小亮调查了一家湘潭特产店两种湘莲礼盒一个月的销售情况,A种湘莲礼盒进价72元/盒,售价120元/盒,B种湘莲礼盒进价40元/盒,售价80元/盒,这两种湘莲礼盒这个月平均每天的销售总额为2800元,平均每天的总利润为1280元.(1)求该店平均每天销售这两种湘莲礼盒各多少盒?(2)小亮调查发现,种湘莲礼盒售价每降3元可多卖1盒.若种湘莲礼盒的售价和销量不变,当种湘莲礼盒降价多少元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是多少元?20.(6分)某商店销售一种商品,每件成本8元,规定每件商品售价不低于成本,且不高于20元,经市场调查每天的销售量y(件)与每件售价x(元)满足一次函数关系,部分数据如下表:售价x(元件)1011121314x销售量y(件)100908070(1)将上面的表格填充完整;(2)设该商品每天的总利润为w元,求w与x之间的函数表达式;(3)计算(2)中售价为多少元时,获得最大利润,最大利润是多少?21.(6分)某超市欲购进一种今年新上市的产品,购进价为20元件,为了调查这种新产品的销路,该超市进行了试销售,得知该产品每天的销售量件与每件的销售价元件之间有如下关系:请写出该超市销售这种产品每天的销售利润元与x之间的函数关系式,并求出超市能获取的最大利润是多少元.若超市想获取1500元的利润求每件的销售价.若超市想获取的利润不低于1500元,请求出每件的销售价X的范围?22.(8分)已知,如图1,在中,对角线,,,如图2,点从点出发,沿方向匀速运动,速度为,过点作交于点;将沿对角线剪开,从图1的位置与点同时出发,沿射线方向匀速运动,速度为,当点停止运动时,也停止运动.设运动时间为,解答下列问题:(1)当为何值时,点在线段的垂直平分线上?(2)设四边形的面积为,试确定与的函数关系式;(3)当为何值时,有最大值?(4)连接,试求当平分时,四边形与四边形面积之比.23.(8分)中国古代有着辉煌的数学成就,《周髀算经》,《九章算术》,《海岛算经》,《孙子算经》等是我国古代数学的重要文献.(1)小聪想从这4部数学名著中随机选择1部阅读,则他选中《九章算术》的概率为;(2)某中学拟从这4部数学名著中选择2部作为“数学文化”校本课程学习内容,求恰好选中《九章算术》和《孙子算经》的概率.24.(8分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=1.(1)求反比例函数的解析式;(2)求cos∠OAB的值;(1)求经过C、D两点的一次函数解析式.25.(10分)如图,在A岛周围50海里水域有暗礁,一轮船由西向东航行到O处时,发现A岛在北偏东60°方向,轮船继续正东方向航行40海里到达B处发现A岛在北偏东45°方向,该船若不改变航向继续前进,有无触礁的危险?(参考数据:)26.(10分)如图,一次函数y=ax+b(a≠0)的图象与反比例函数(k≠0)的图象相交于A,B两点,与x轴,y轴分别交于C,D两点,tan∠DCO=,过点A作AE⊥x轴于点E,若点C是OE的中点,且点A的横坐标为﹣1.,(1)求该反比例函数和一次函数的解析式;(2)连接ED,求△ADE的面积.

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:设袋中白球有x个,根据题意得:=0.75,解得:x=5,经检验:x=5是分式方程的解,故袋中白球有5个.故选A.【点睛】此题考查了利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=是解题关键.2、C【分析】根据反比例函数的性质,利用排除法求解.【详解】A、x=﹣1,y==﹣1,∴图象经过点(﹣1,﹣1),正确;B、∵k=1>0;,∴图象在第一、三象限,正确;C、当x=1时,y=1,∵图象在第一象限内y随x的增大而减小,∴当x>1时y<1,错误;D、∵k=1>0,∴图象在第三象限内y随x的增大而减小,正确.故选:C.【点睛】此题考查反比例函数的性质,正确掌握函数的增减性,k值与图象所在象限的关系.3、D【分析】相似三角形的周长比等于相似比,面积比等于相似比的平方.【详解】∵两个相似三角形的周长之比为1∶4∴它们的面积之比为1∶16故选D.【点睛】本题考查相似三角形的性质,本题属于基础应用题,只需学生熟练掌握相似三角形的性质,即可完成.4、B【分析】判断上述方程的根的情况,只要看根的判别式△=b2-4ac的值的符号就可以了.关于x的一元二次方程kx2+3x-1=1有实数根,则△=b2-4ac≥1.【详解】解:∵a=k,b=3,c=-1,

∴△=b2-4ac=32+4×k×1=9+4k≥1,,

∵k是二次项系数不能为1,k≠1,

即且k≠1.

故选:B.【点睛】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.5、C【详解】解:设母线长为R,底面半径为r,可得底面周长=2πr,底面面积=πr2,侧面面积=lr=πrR,根据圆锥侧面积恰好等于底面积的3倍可得3πr2=πrR,即R=3r.根据圆锥的侧面展开图的弧长等于圆锥的底面周长,设圆心角为n,有,即.可得圆锥侧面展开图所对应的扇形圆心角度数n=120°.故选C.考点:有关扇形和圆锥的相关计算6、C【分析】根据三角形中位线定理可得DE=BC,代入数据可得答案.【详解】解:∵线段AB,AC的中点为D,E,

∴DE=BC,

∵DE=20米,

∴BC=40米,

故选:C.【点睛】此题主要考查了三角形中位线定理,关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半.7、C【分析】根据平行线的性质,可得∠FAC=∠C=45°,然后根据三角形外角的性质,即可求出∠1.【详解】解:由三角板可知:∠F=30°,∠C=45°∵∴∠FAC=∠C=45°∴∠1=∠FAC+∠F=75°故选:C.【点睛】此题考查的是平行线的性质和三角形外角的性质,掌握两直线平行,内错角相等和三角形的一个外角等于与它不相邻的两个内角之和是解决此题的关键.8、A【分析】设道路的宽度为x米.把道路进行平移,使六块草坪重新组合成一个矩形,根据矩形的面积公式即可列出方程.【详解】解:设横、纵道路的宽为x米,把两条与AB平行的道路平移到左边,另一条与AD平行的道路平移到下边,则六块草坪重新组合成一个矩形,矩形的长、宽分别为(50﹣2x)米、(30﹣x)米,所以列方程得(50﹣2x)×(30﹣x)=178×6,故选:A.【点睛】本题考查了由实际问题抽象出一元二次方程,对图形进行适当的平移是解题的关键.9、B【分析】大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率即可得到答案.【详解】解:由此估计这种幼苗在此条件下成活的概率约为0.9,故A选项正确;如果在此条件下再移植这种幼苗20000株,则大约成活18000株,故B选项错误;可以用试验次数累计最多时的频率作为概率的估计值,故C选项正确;在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率,故D选项正确.故选:B.【点睛】本题主要考查的是利用频率估计概率,大量反复试验下频率稳定值即概率,掌握这个知识点是解题的关键.10、C【分析】利用直接开平方法求解可得.【详解】解:∵x2﹣5=0,∴x2=5,则x=,故选:C.【点睛】本题考查解方程,熟练掌握计算法则是解题关键.二、填空题(每小题3分,共24分)11、3或7【分析】先化成顶点式,设向右平移个单位,再由平移规律求出平移后的抛物线解析式,再把点(4,5)代入新的抛物线解析式即可求出m的值.【详解】,设抛物线向右平移个单位,得到:,∵经过点(4,5),

∴,化简得:,∴

解得:或.

故答案为:或.【点睛】本题主要考查了函数图象的平移和一个点在图象上那么这个点就满足该图象的解析式,要求熟练掌握平移的规律:左加右减,上加下减,并用规律求函数解析式.12、【分析】直接利用特殊角的三角函数值得出∠A=30°,进而得出∠B的度数,进而得出答案.【详解】∵tan∠A=,∴∠A=30°,∵∠C=90°,∴∠B=180°﹣30°﹣90°=60°,∴cos∠B=.故答案为:.【点睛】此题主要考查了特殊角的三角函数值,正确理解三角函数的计算公式是解题关键.13、1【解析】解:设红球有n个由题意得:,解得:n=1.故答案为=1.14、1【解析】根据sin30°=12【详解】sin30°=12【点睛】本题考查的知识点是特殊角的三角函数值,解题的关键是熟练的掌握特殊角的三角函数值.15、1【分析】由题意根据圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【详解】解:设底面半径为rcm,12π=πr×4,解得r=1.故答案为:1.【点睛】本题考查圆锥的计算,解题的关键是熟练掌握圆锥侧面积的计算公式.16、130°【分析】根据圆内接四边形的对角互补,得∠ABC=180°-∠D=130°.【详解】解:∵四边形ABCD是⊙O的内接四边形,∴∠ABC+∠D=180°,∵∠D=50°,∴∠ABC=180°-∠D=130°.故答案为:130°.【点睛】本题考查了圆内接四边形的性质,圆内接四边形对角互补.17、140°.【分析】根据内心的定义可知OB、OC为∠ABC和∠ACB的角平分线,根据三角形内角和定理可求出∠OBC+∠OCB的度数,进而可求出∠BOC的度数.【详解】∵点O是△ABC的内切圆的圆心,∴OB、OC为∠ABC和∠ACB的角平分线,∴∠OBC=∠ABC,∠OCB=∠ACB,∵∠A=100°,∴∠ABC+∠ACB=180°-100°=80°,∴∠OBC+∠OCB=(∠ABC+∠ACB)=40°,∴∠BOC=180°-40°=140°.故答案为:140°【点睛】本题考查了三角形内心的定义及三角形内角和定理,熟练掌握三角形内切圆的圆心是三角形三条角平分线的交点是解题关键.18、4【分析】根据垂径定理可得AD=AB,然后由勾股定理可得OD的长,继而可得CD的高求解.【详解】解:∵CD垂直平分AB,∴AD=1.∴OD==6m,∴CD=OC−OD=10−6=4(m).故答案是:4【点睛】本题考查垂径定理和勾股定理的实际应用,掌握这些知识点是解题关键.三、解答题(共66分)19、(1)该店平均每天销售礼盒10盒,种礼盒为20盒;(2)当种湘莲礼盒降价9元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是1307元.【分析】(1)根据题意,可设平均每天销售礼盒盒,种礼盒为盒,列二元一次方程组即可解题(2)根据题意,可设种礼盒降价元/盒,则种礼盒的销售量为:()盒,再列出关系式即可.【详解】解:(1)根据题意,可设平均每天销售礼盒盒,种礼盒为盒,则有,解得故该店平均每天销售礼盒10盒,种礼盒为20盒.(2)设A种湘莲礼盒降价元/盒,利润为元,依题意总利润化简得∵∴当时,取得最大值为1307,故当种湘莲礼盒降价9元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是1307元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.20、(1)见解析;(2)w=﹣10x2+280x﹣1600;(3)售价为14元时,获得最大利润,最大利润是360元.【分析】(1)设y=kx+b,由待定系数法可列出方程组:,解得:则y=﹣10x+200,当x=14时,y=60.(2)由题意得,w与x之间的函数表达式为:w=(x﹣8)(﹣10x+200)=﹣10x2+280x﹣1600;(3)∵w=﹣10x2+280x﹣1600=﹣10(x﹣14)2+360,故售价为14元时,获得最大利润,最大利润是360元.【详解】解:(1)设销售量y(件)与每件售价x(元)满足一次函数关系为y=kx+b,∴,解得:,∴销售量y(件)与每件售价x(元)满足一次函数关系为y=﹣10x+200,当x=14时,y=60,故答案为:60,﹣10x+200;(2)由题意得,w与x之间的函数表达式为:w=(x﹣8)(﹣10x+200)=﹣10x2+280x﹣1600;(3)∵w=﹣10x2+280x﹣1600=﹣10(x﹣14)2+360,故售价为14元时,获得最大利润,最大利润是360元.【点睛】本题的考点是一次函数及二次函数的综合应用.方法是根据题意列出函数式,再根据二次函数的性质求解.21、(1),2000;(2)每件的销售价为35元和25元;(3).【分析】(1)根据利润=单件利润×销售量列出y与x的函数关系式,利用对称轴求函数最大值;(2)令y=1500构造一元二次方程;(3)由(2)结合二次函数图象观察图象可解.【详解】(1)由已知

当时,

解得,

所以每件的销售价为35元和25元.

由结合函数图象可知超市想获取的利润不低于1500元,x的取值范围为:25<x<35.【点睛】本题考查了二次函数实际应用问题,解题的关键是熟练掌握二次函数的性质和一元二次方程,解答时注意结合函数图象解决问题.22、(1),(2)四边形AHGD(3)当四边形的面积最大,最大面积为(4)【分析】(1)由题意得:利用垂直平分线的性质得到:列方程求解即可,(2)四边形AHGD分别求出各图形的面积,代入计算即可得到答案,(3)利用(2)中解析式,结合二次函数的性质求最大面积即可,(4)连接过作于从而求解此时时间,分别求解四边形EGFD和四边形AHGE的面积,即可得到答案.【详解】解:(1)如图,由题意得:及平移的性质,点在线段的垂直平分线上,当时,点在线段的垂直平分线上.(2),,,又点在上,四边形AHGD()(3)四边形AHGD且抛物线的对称轴是:时,随的增大而增大,当四边形的面积最大,最大面积为:(4)如图,连接过作于平分此时:由四边形EGFD四边形ABGE四边形AHGE.四边形EGFD:四边形AHGE【点睛】本题考查的是平行四边形中几何动态问题,考查了线段的垂直平分线的性质,图形面积的计算,二次函数的性质,掌握以上知识是解题的关键.23、(1);(2)【分析】(1)根据小聪选择的数学名著有四种可能,而他选中《九章算术》只有一种情况,再根据概率公式解答即可;(2)此题需要两步完成,所以可采用树状图法或者采用列表法求解.【详解】解:(1)小聪想从这4部数学名著中随机选择1部阅读,则他选中《九章算术》的概率为.故答案为;(2)将四部名著《周髀算经》,《九章算术》,《海岛算经》,《孙子算经》分别记为A,B,C,D,记恰好选中《九章算术》和《孙子算经》为事件M.方法一:用列表法列举出从4部名著中选择2部所能产生的全部结果:第1部第2部ABCDABACADABABCBDBCACBCDCDADBDCD由表中可以看出,所有可能的结果有12种,并且这12种结果出现的可能性相等,所有可能的结果中,满足事件M的结果有2种,即DB,BD,∴P(M)=.方法二:根据题意可以画出如下的树状图:由树状图可以看出,所有可能的结果有12种,并且这12种结果出现的可能性相等,所有可能的结果中,满足事件M的结果有2种,即BD,DB,∴P(M)=.故答案为:.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.24、(1);(2);(1).【解析】试题分析:(1)设点D的坐标为(2,m)(m>0),则点A的坐标为(2,1+m),由点A的坐标表示出点C的坐标,根据C、D点在反比例函数图象上结合反比例函数图象上点的坐标特征即可得出关于k、m的二元一次方程,解方程即可得出结论;(2)由m的值,可找出点A的坐标,由此即可得出线段OB、AB的长度,通过解直角三角形即可得出结论;(1)由m的值,可找出点C、D的坐标,设出过点C、D的一次函数的解析式为y=ax+b,由点C、D的坐标利用待定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论