版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年辽宁省丹东市凤城市白旗中学数学九上期末质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A.30° B.45°C.90° D.135°2.在平面直角坐标系中,开口向下的抛物线y=ax2+bx+c的一部分图象如图所示,它与x轴交于A(1,0),与y轴交于点B(0,3),对称轴是直线x=-1.则下列结论正确的是()A.ac>0 B.b2-4ac=0 C.a-b+c<0 D.当-3<x<1时,y>03.如图,在中,,,,以点为圆心,长为半径画弧,交边于点,则阴影区域的面积为()A. B. C. D.4.小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:《西游记》、施耐庵、《安徒生童话》、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是()A. B. C. D.5.m是方程的一个根,且,则的值为()A. B.1 C. D.6.如图,PA、PB是⊙O切线,A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB等于()A.55° B.70° C.110° D.125°7.将二次函数y=2x2-4x+4的图象向左平移2个单位,再向下平移1个单位后所得图象的函数解析式为()A.y=2(x+1)2+1 B.y=2(x+1)2+3 C.y=2(x-3)2+1 D.y=-2(x-3)2+38.通过对《一元二次方程》全章的学习,同学们掌握了一元二次方程的三种解法:配方法、公式法、因式分解法,其实,每种解法都是把一个一元二次方程转化为两个一元一次方程来解,体现的基本思想是()A.转化 B.整体思想 C.降次 D.消元9.抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3) B.(﹣2,3) C.(2,﹣3) D.(﹣2,﹣3)10.在同一直角坐标系中,一次函数与反比例函数的图象大致是()A. B. C. D.11.如图,AB为⊙O的直径,C、D是⊙O上的两点,∠CDB=25°,过点C作⊙O的切线交AB的延长线于点E,则∠E的度数为()A.40° B.50° C.55° D.60°12.若2是关于方程x2﹣5x+c=0的一个根,则这个方程的另一个根是()A.﹣3 B.3 C.﹣6 D.6二、填空题(每题4分,共24分)13.在阳光下,高6m的旗杆在水平地面上的影子长为4m,此时测得附近一个建筑物的影子长为16m,则该建筑物的高度是_____m.14.如图,在△ABC中,AC=4,BC=6,CD平分∠ACB交AB于D,DE∥BC交AC于E,则DE的长为_____.15.如图,在菱形ABCD中,E,F分别是AD,BD的中点,若EF=2,则菱形ABCD的周长是__.16.如图,三个顶点的坐标分别为,以原点O为位似中心,把这个三角形缩小为原来的,可以得到,已知点的坐标是,则点的坐标是______.17.如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm,则该莱洛三角形的周长为_____cm.18.如图,PA,PB是⊙O的切线,切点分别是点A和B,AC是⊙O的直径.若∠P=60°,PA=6,则BC的长为__________.三、解答题(共78分)19.(8分)如图,抛物线与轴交于、两点,与轴交于点.(1)求点、、的坐标;(2)若点在轴的上方,以、、为顶点的三角形与全等,平移这条抛物线,使平移后的抛物线经过点与点,请你写出平移过程,并说明理由。20.(8分)甲、乙、丙、丁共四支篮球队要进行单循环积分赛(每两个队间均要比赛一场),每天比赛一场,经抽签确定比赛场次顺序.(1)甲抽到第一场出场比赛的概率为;(2)用列表法或树状图计算甲、乙两队抽得第一场进行比赛的概率.21.(8分)为推进“传统文化进校园”活动,我市某中学举行了“走进经典”征文比赛,赛后整理参赛学生的成绩,将学生的成绩分为四个等级,并将结果绘制成不完整的条形统计图和扇形统计图.请根据统计图解答下列问题:(1)参加征文比赛的学生共有人;(2)补全条形统计图;(3)在扇形统计图中,表示等级的扇形的圆心角为__图中;(4)学校决定从本次比赛获得等级的学生中选出两名去参加市征文比赛,已知等级中有男生一名,女生两名,请用列表或画树状图的方法求出所选两名学生恰好是一名男生和一名女生的概率.22.(10分)如图,在⊙O中,点D是⊙O上的一点,点C是直径AB延长线上一点,连接BD,CD,且∠A=∠BDC.(1)求证:直线CD是⊙O的切线;(2)若CM平分∠ACD,且分别交AD,BD于点M,N,当DM=2时,求MN的长.23.(10分)函数与函数(、为不等于零的常数)的图像有一个公共点,其中正比例函数的值随的值增大而减小,求这两个函数的解析式.24.(10分)对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境,为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的四个小区进行检查,并且每个小区不重复检查.请用列表或画树状图的方法求甲组抽到小区,同时乙组抽到小区的概率.25.(12分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧AC的长.26.在平面直角坐标系xOy中,直线y=x+b(k≠0)与双曲线一个交点为P(2,m),与x轴、y轴分别交于点A,B两点.(1)求m的值;(2)求△ABO的面积;
参考答案一、选择题(每题4分,共48分)1、C【分析】根据勾股定理求解.【详解】设小方格的边长为1,得,OC=,AO=,AC=4,∵OC2+AO2==16,AC2=42=16,∴△AOC是直角三角形,∴∠AOC=90°.故选C.【点睛】考点:勾股定理逆定理.2、D【分析】根据二次函数图象和性质逐项判断即可.【详解】解:∵抛物线y=ax2+bx+c的图象开口向下,与y轴交于点B(0,3),∴a<0,c>0,∴ac<0,故A选项错误;∵抛物线y=ax2+bx+c与x轴有两个交点,∴b2-4ac>0,故B选项错误;∵对称轴是直线x=-1,∴当x=-1时,y>0,即a-b+c>0,故C选项错误;∵抛物线y=ax2+bx+c对称轴是直线x=-1,与x轴交于A(1,0),∴另一个交点为(-3,0),∴当-3<x<1时,y>0,故D选项正确.故选:D.【点睛】本题考查二次函数的图象和性质.熟练掌握二次函数的图象和性质是解题的关键.3、C【分析】根据直角三角形的性质得到AC=2,BC=2,∠B=60,根据扇形和三角形的面积公式即可得到结论.【详解】∵在Rt△ABC中,∠ACB=90,∠A=30,AB=4,∴BC=AB=2,AC=,∠B=60,∴阴影部分的面积=S△ACB−S扇形BCD=×2×2-=,故选:C.【点睛】本题考查了扇形面积的计算,含30角的直角三角形的性质,正确的识别图形是解题的关键4、D【解析】根据题意先画出树状图得出所有等情况数和到的书签正好是相对应的书名和作者姓名的情况数,再根据概率公式即可得出答案.【详解】解:根据题意画图如下:共有12种等情况数,抽到的书签正好是相对应的书名和作者姓名的有2种情况,则抽到的书签正好是相对应的书名和作者姓名的概率是=;故选D.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.5、A【解析】将m代入关于x的一元二次方程x2+nx+m=0,通过解该方程即可求得m+n的值.【详解】解:∵m是关于x的一元二次方程x2+nx+m=0的根,
∴m2+nm+m=0,
∴m(m+n+1)=0;
又∵m≠0,
∴m+n+1=0,
解得m+n=-1;
故选:A.【点睛】本题考查了一元二次方程的解的定义.一元二次方程ax2+bx+c=0(a≠0)的解一定满足该一元二次方程的关系式.6、B【分析】根据圆周角定理构造它所对的弧所对的圆心角,即连接OA,OB,求得∠AOB=110°,再根据切线的性质以及四边形的内角和定理即可求解.【详解】解:连接OA,OB,∵PA,PB是⊙O的切线,∴PA⊥OA,PB⊥OB,∵∠ACB=55°,∴∠AOB=110°,∴∠APB=360°−90°−90°−110°=70°.故选B.【点睛】本题考查了多边形的内角和定理,切线的性质,圆周角定理的应用,关键是求出∠AOB的度数.7、A【分析】先配方成顶点式,再根据二次函数图象的平移规律“上加下减,左加右减”解答即可.【详解】由“上加下减,左加右减”的原则可知,将二次函数y=2x2-4x+4配方成的图象向左平移2个单位,再向下平移1个单位,得以新的抛物线的表达式是y=2(x+1)2+1,故选:A.【点睛】本题主要考查的是函数图象的平移,由y=ax2平移得到y=a(x-h)2+k,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式即可.8、C【分析】根据“每种解法都是把一个一元二次方程转化为两个一元一次方程来解”进行判断即可.【详解】每种解法都是把一个一元二次方程转化为两个一元一次方程来解,也就是“降次”,故选:C.【点睛】本题考查一元二次方程解法的理解,读懂题意是关键.9、A【分析】根据抛物线的顶点式可直接得到顶点坐标.【详解】解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.【点睛】本题考查了二次函数的顶点式与顶点坐标,顶点式y=(x-h)2+k,顶点坐标为(h,k),对称轴为直线x=h,难度不大.10、C【分析】由于本题不确定k的符号,所以应分k>0和k<0两种情况分类讨论,针对每种情况分别画出相应的图象,然后与各选择比较,从而确定答案.【详解】(1)当k>0时,一次函数y=kx-k
经过一、三、四象限,反比例函数经过一、三象限,如图所示:(2)当k<0时,一次函数y=kx-k经过一、二、四象限,反比例函数经过二、四象限.如图所示:故选:C.【点睛】本题考查了反比例函数、一次函数的图象.灵活掌握反比例函数的图象性质和一次函数的图象性质是解决问题的关键,在思想方法方面,本题考查了数形结合思想、分类讨论思想.11、A【分析】首先连接OC,由切线的性质可得OC⊥CE,又由圆周角定理,可求得∠COB的度数,继而可求得答案.【详解】解:连接OC,∵CE是⊙O的切线,∴OC⊥CE,即∠OCE=90°,∵∠COB=2∠CDB=50°,∴∠E=90°﹣∠COB=40°.故选:A.【点睛】本题考查了切线性质,三角形的外角性质,圆周角定理,等腰三角形的性质,正确的作出辅助线是解题的关键.12、B【分析】根据一元二次方程根与系数的关系即可得.【详解】设这个方程的另一个根为,由一元二次方程根与系数的关系得:,解得,故选:B.【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题关键.二、填空题(每题4分,共24分)13、1【分析】先设建筑物的高为h米,再根据同一时刻物高与影长成正比列出关系式求出h的值即可.【详解】解:设建筑物的高为h米,则=,解得h=1.故答案为:1.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.14、2.1【分析】由条件可证出DE=EC,证明△AED∽△ACB,利用对应边成比例的知识,可求出DE长.【详解】∵CD平分∠ACB交AB于D,∴∠ACD=∠DCB,又∵DE∥BC,∴∠EDC=∠DCB,∴∠ACD=∠EDC,∴DE=EC,设DE=x,则AE=1﹣x,∵DE∥BC,∴△AED∽△ACB,∴,即,∴x=2.1.故答案为:2.1.【点睛】此题主要考查相似三角形的判定与性质,解题的关键根据相似三角形找到对应线段成比例.15、1【解析】试题分析:先利用三角形中位线性质得到AB=4,然后根据菱形的性质计算菱形ABCD的周长.∵E,F分别是AD,BD的中点,∴EF为△ABD的中位线,∴AB=2EF=4,∵四边形ABCD为菱形,∴AB=BC=CD=DA=4,∴菱形ABCD的周长=4×4=1.考点:(1)菱形的性质;(2)三角形中位线定理.16、(1,2)【解析】解:∵点A的坐标为(2,4),以原点O为位似中心,把这个三角形缩小为原来的,∴点A′的坐标是(2×,4×),即(1,2).故答案为(1,2).17、6π【分析】直接利用弧长公式计算即可.【详解】利用弧长公式计算:该莱洛三角形的周长(cm)故答案为6π【点睛】本题考查了弧长公式,熟练掌握弧长公式是解题关键.18、【分析】连接AB,根据PA,PB是⊙O的切线可得PA=PB,从而得出AB=6,然后利用∠P=60°得出∠CAB为30°,最后根据直角三角形中30°角的正切值进一步计算即可.【详解】如图,连接AB,∵PA,PB是⊙O的切线,∴PA=PB,∵∠P=60°,∴△ABP为等边三角形,∴AB=6,∵∠P=60°,∴∠CAB=30°,易得△ABC为直角三角形,∴,∴BC=AB×=,故答案为:.【点睛】本题主要考查了圆中切线长与三角函数的综合运用,熟练掌握相关概念是解题关键.三、解答题(共78分)19、(1),,;(2),.理由见解析.【分析】(1)令中y=0,求出点A、B的坐标,令x=0即可求出点C的坐标;(2)分两种全等情况求出点D的坐标,再设平移后的解析式,将点B、D的坐标代入即可求出解析式,由平移前的解析式根据顶点式的数值变化得到平移的方向与距离.【详解】(1)令中y=0,得,解得:,∴,.当中x=0时,y=-3,∴.(2)当△ABD1≌△ABC时,∵,∴由轴对称得D1(0,3),设平移后的函数解析式为,将点B、D1的坐标代入,得,解得,∴平移后的解析式为,∵平移前的解析式为,∴将向右平移3个单位,再向上3个单位得到;当△ABD2≌△BAC时,即△ABD2≌△BAD1,作D2H⊥AB,∴AH=OB=1,D2H=OD1=3,∴OH=OA-AH=3-1=2,∴D2(-2,3),设平移后的解析式为,将点B、D2的坐标代入得,解得,∴平移后的函数解析式为,∵平移前的解析式为,∴将向右平移1个单位,再向上平移3个单位得到.【点睛】此题考查二次函数图象与坐标轴交点的求法,函数图象平移的规律,求图象平移规律时需先求得函数的解析式,将平移前后的解析式都化为顶点式,根据顶点式中h、k的变化确定平移的方向与距离.20、(1);(2)【分析】(1)直接利用概率公式计算可得;(2)先画树状图列出所有等可能结果,再从中找到符合条件的结果数,继而利用概率公式求解可得.【详解】解答】解:(1)甲抽到第一场出场比赛的概率为,故答案为:;(2)画树状图得:∵共有12种等可能的结果,恰好选中甲、乙两队的有2种情况,∴甲、乙两队抽得第一场进行比赛的概率为.【点睛】本题考查了用列表法或树状图计算概率的方法,概率=所求情况数与总情况数之比21、(1)30;(2)图见解析;(3)144°,30;(4).【分析】(1)根据等级为A的人数除以所占的百分比即可求出总人数;(2)根据条形统计图得出A、C、D等级的人数,用总人数减A、C、D等级的人数即可;(3)计算C等级的人数所占总人数的百分比,即可求出表示等级的扇形的圆心角和的值;(4)利用列表法或树状图法得出所有等可能的情况数,找出一名男生和一名女生的情况数,即可求出所求的概率.【详解】解:(1)根据题意得成绩为A等级的学生有3人,所占的百分比为10%,则3÷10%=30,即参加征文比赛的学生共有30人;(2)由条形统计图可知A、C、D等级的人数分别为3人、12人、6人,则30−3−12−6=9(人),即B等级的人数为9人补全条形统计图如下图(3),,∴m=30(4)依题意,列表如下:男女女男(男,女)(男,女)女(男,女)(女,女)女(男,女)(女,女)由上表可知总共有6种结果,每种结果出现的可能性相同,其中所选两名学生恰好是一男一女的结果共有4种,所以;或树状图如下由上图可知总共有6种结果,每种结果出现的可能性相同,其中所选两名学生恰好是一男一女的结果共有4种,所以.【点睛】本题考查了条形统计图、扇形统计图以及利用列表法或者树状图法求概率,弄清题意是解题的关键.22、(1)见解析;(2)MN=2.【解析】(1)如图,连接OD.欲证明直线CD是⊙O的切线,只需求得∠ODC=90°即可;(2)由角平分线及三角形外角性质可得∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,根据勾股定理可求得MN的长.【详解】(1)证明:如图,连接OD.∵AB为⊙O的直径,∴∠ADB=90°,即∠A+∠ABD=90°,又∵OD=OB,∴∠ABD=∠ODB,∵∠A=∠BDC;∴∠CDB+∠ODB=90°,即∠ODC=90°.∵OD是圆O的半径,∴直线CD是⊙O的切线;(2)解:∵CM平分∠ACD,∴∠DCM=∠ACM,又∵∠A=∠BDC,∴∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,∵∠ADB=90°,DM=2,∴DN=DM=2,∴MN==2.【点睛】本题主要考查切线的性质、圆周角定理、角平分线的性质及勾股定理,熟练掌握切线的性质:圆的切线垂直于过切点的半径是解本题的关键.23、,【分析】把点A(3,k-2)代入,即可得出=k−2,据此求出k的值,再根据正比例函数y的值随x的值增大而减小,得出满足条件的k值即可求解.【详解】根据题意可得
=k−2,
整理得k2-2k+3=0,
解得k1=-1,k2=3,
∵正比例函数y的值随x的值增大而减小,
∴k=-1,
∴点A的坐标为(3,-3),
∴反比例函数是解析式为:y=−;
正比例函数的解析式为:y=-x.【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于将函数图象的交点与方程(组)的解结合起来是解此类题目常用的方法.24、.【分析】利用树状图得出所有可能的结果数和甲组抽到小区,同时乙组抽到小区的结果数,然后根据概率公式求解即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 制造业劳动合同管理策略
- 教育机构整体租赁合同模板
- 家具生产厂租赁合同模板
- 通风空调工程合同样本
- 家电设计师合作协议范本
- 私募基金仲裁补充协议书
- 办公室助理聘用合同范例
- 建筑施工合同模板:公共交通工程
- 农药生产企业劳动合同模板
- 体育赛事招投标廉洁协议样本
- 结构化学(PDF电子书)
- 标准夫妻婚内协议书模板
- 人教版三年级上册道德与法治全册知识点 (复习资料)
- 高中英语新外研版必修1单词英译汉
- 膜结构车棚施工方案模板
- 商业银行中小企业信贷风险管理研究-以华夏银行为例
- 2024年出版出版专业基础知识试题初级答案
- DB15-T 3600-2024 黑土地质量等级划分技术规范
- 人防民防知识宣传手册
- DL∕T 5767-2018 电网技术改造工程工程量清单计价规范
- 国有企业股权转让协议(2024版)
评论
0/150
提交评论