2023-2024学年黑龙江省哈尔滨市宾县数学九年级第一学期期末质量跟踪监视试题含解析_第1页
2023-2024学年黑龙江省哈尔滨市宾县数学九年级第一学期期末质量跟踪监视试题含解析_第2页
2023-2024学年黑龙江省哈尔滨市宾县数学九年级第一学期期末质量跟踪监视试题含解析_第3页
2023-2024学年黑龙江省哈尔滨市宾县数学九年级第一学期期末质量跟踪监视试题含解析_第4页
2023-2024学年黑龙江省哈尔滨市宾县数学九年级第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年黑龙江省哈尔滨市宾县数学九年级第一学期期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.使用家用燃气灶烧开同一壶水所需的燃气量(单位:)与旋钮的旋转角度(单位:度)()近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度与燃气量的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A. B. C. D.2.某人沿着坡度为1:2.4的斜坡向上前进了130m,那么他的高度上升了()A.50m B.100m C.120m D.130m3.已知,如图,点C,D在⊙O上,直径AB=6cm,弦AC,BD相交于点E,若CE=BC,则阴影部分面积为()A. B. C. D.4.抛物线y=x2﹣4x+1与y轴交点的坐标是()A.(0,1) B.(1,O) C.(0,﹣3) D.(0,2)5.在下列几何体中,主视图、左视图和俯视图形状都相同的是()A. B. C. D.6.如图,是的内接正十边形的一边,平分交于点,则下列结论正确的有()①;②;③;④.A.1个 B.2个 C.3个 D.4个7.如图,一个直角梯形的堤坝坡长AB为6米,斜坡AB的坡角为60°,为了改善堤坝的稳固性,准备将其坡角改为45°,则调整后的斜坡AE的长度为()A.3米 B.3米 C.(3﹣2)米 D.(3﹣3)米8.如图,已知“人字梯”的5个踩档把梯子等分成6份,从上往下的第二个踩档与第三个踩档的正中间处有一条60cm长的绑绳EF,tanα=,则“人字梯”的顶端离地面的高度AD是()A.144cm B.180cm C.240cm D.360cm9.如图,一条公路环绕山脚的部分是一段圆弧形状(O为圆心),过A,B两点的切线交于点C,测得∠C=120°,A,B两点之间的距离为60m,则这段公路AB的长度是()A.10πm B.20πm C.10πm D.60m10.在比例尺为1:100000的城市交通图上,某道路的长为3厘米,则这条道路的实际距离为()千米.A.3 B.30 C.3000 D.0.311.一元二次方程的二次项系数、一次项系数分别是A.3, B.3,1 C.,1 D.3,612.如图所示是二次函数y=ax2﹣x+a2﹣1的图象,则a的值是()A.a=﹣1 B.a= C.a=1 D.a=1或a=﹣1二、填空题(每题4分,共24分)13.已知两个相似三角形的周长比是,它们的面积比是________.14.若是关于的方程的一个根,则的值为_________________.15.如图,一副含和角的三角板和拼合在一个平面上,边与重合,.当点从点出发沿方向滑动时,点同时从点出发沿射线方向滑动.当点从点滑动到点时,点运动的路径长为______.16.菱形ABCD的周长为20,且有一个内角为120°,则它的较短的对角线长为______.17.已知直线a∥b∥c,直线m,n与直线a,b,c分别交于点A,C,E,B,D,F,AC=4,CE=6,BD=3,则BF=_____.18.如图在中,,,以点为圆心,的长为半径作弧,交于点,为的中点,以点为圆心,长为半径作弧,交于点,若,则阴影部分的面积为________.三、解答题(共78分)19.(8分)如图,在下列10×10的网格中,横、纵坐标均为整点的数叫做格点,例如A(2,1)、B(5,4)、C(1,8)都是格点.(1)直接写出△ABC的面积;(2)将△ABC绕点B逆时针旋转90°得到△A1BC1,在网格中画出△A1BC1;(3)在图中画出线段EF,使它同时满足以下条件:①点E在△ABC内;②点E,F都是格点;③EF三等分BC;④EF=.请写出点E,F的坐标.20.(8分)在△ABC中,AD、CE分别是△ABC的两条高,且AD、CE相交于点O,试找出图中相似的三角形,并选出一组给出证明过程.21.(8分)为迎接年中、日、韩三国青少年橄榄球比赛,南雅中学计划对面积为运动场进行塑胶改造.经投标,由甲、乙两个工程队来完成,已知甲队每天能改造的面积是乙队每天能改造面积的倍,并且在独立完成面积为的改造时,甲队比乙队少用天.(1)求甲、乙两工程队每天能完成塑胶改造的面积;(2)设甲工程队施工天,乙工程队施工天,刚好完成改造任务,求与的函数解析式;(3)若甲队每天改造费用是万元,乙队每天改造费用是万元,且甲、乙两队施工的总天数不超过天,如何安排甲、乙两队施工的天数,使施工总费用最低?并求出最低的费用.22.(10分)我市某化工材料经销商购进一种化工材料若干千克,成本为每千克30元,物价部门规定其销售单价不低于成本价且不高于成本价的2倍,经试销发现,日销售量(千克)与销售单价(元)符合一次函数关系,如图所示.(1)求与之间的函数关系式,并写出自变量的取值范围;(2)若在销售过程中每天还要支付其他费用500元,当销售单价为多少时,该公司日获利最大?最大获利是多少元?23.(10分)如图,双曲线上的一点,其中,过点作轴于点,连接.(1)已知的面积是,求的值;(2)将绕点逆时针旋转得到,且点的对应点恰好落在该双曲线上,求的值.24.(10分)在平面直角坐标系xOy中,对称轴为直线x=1的抛物线y=ax2+bx+8过点(﹣2,0).(1)求抛物线的表达式,并写出其顶点坐标;(2)现将此抛物线沿y轴方向平移若干个单位,所得抛物线的顶点为D,与y轴的交点为B,与x轴负半轴交于点A,过B作x轴的平行线交所得抛物线于点C,若AC∥BD,试求平移后所得抛物线的表达式.25.(12分)如图,为反比例函数(其中)图象上的一点,在轴正半轴上有一点.连接,且.(1)求的值;(2)过点作,交反比例函数(其中)的图象于点,连接交于点,求的值.26.(1)如图①,AB为⊙O的直径,点P在⊙O上,过点P作PQ⊥AB,垂足为点Q.说明△APQ∽△ABP;(2)如图②,⊙O的半径为7,点P在⊙O上,点Q在⊙O内,且PQ=4,过点Q作PQ的垂线交⊙O于点A、B.设PA=x,PB=y,求y与x的函数表达式.

参考答案一、选择题(每题4分,共48分)1、C【解析】根据已知三点和近似满足函数关系y=ax2+bx+c(a≠0)可以大致画出函数图像,并判断对称轴位置在36和54之间即可选择答案.【详解】解:由图表数据描点连线,补全图像可得如图,抛物线对称轴在36和54之间,约为41℃∴旋钮的旋转角度在36°和54°之间,约为41℃时,燃气灶烧开一壶水最节省燃气.故选:C,【点睛】本题考查了二次函数的应用,二次函数的图像性质,熟练掌握二次函数图像对称性质,判断对称轴位置是解题关键.综合性较强,需要有较高的思维能力,用图象法解题是本题考查的重点.2、A【分析】根据坡度的定义可以求得AC、BC的比值,根据AC、BC的比值和AB的长度即可求得AC的值,即可解题.【详解】解:如图,根据题意知AB=130米,tanB==1:2.4,设AC=x,则BC=2.4x,则x2+(2.4x)2=1302,解得x=50(负值舍去),即他的高度上升了50m,故选A.【点睛】本题考查了勾股定理在直角三角形中的运用,坡度的定义及直角三角形中三角函数值的计算,属于基础题.3、B【分析】连接OD、OC,根据CE=BC,得出∠DBC=∠CEB=45°,进而得出∠DOC=90°,根据S阴影=S扇形-S△ODC即可求得.【详解】连接OD、OC,∵AB是直径,∴∠ACB=90°,∵CE=BC,∴∠CBD=∠CEB=45°,∴∠COD=2∠DBC=90°,∴S阴影=S扇形−S△ODC=−×3×3=−.故答案选B.【点睛】本题考查的知识点是扇形面积的计算,解题的关键是熟练的掌握扇形面积的计算.4、A【分析】抛物线与y轴相交时,横坐标为0,将横坐标代入抛物线解析式可求交点纵坐标.【详解】解:当x=0时,y=x2-4x+1=1,

∴抛物线与y轴的交点坐标为(0,1),

故选A.【点睛】本题考查了抛物线与坐标轴交点坐标的求法.令x=0,可到抛物线与y轴交点的纵坐标,令y=0,可得到抛物线与x轴交点的横坐标.5、C【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.依次找到主视图、左视图和俯视图形状都相同的图形即可.【详解】解:A、圆台的主视图和左视图相同,都是梯形,俯视图是圆环,故选项不符合题意;B、三棱柱的主视图和左视图、俯视图都不相同,故选项不符合题意;C、球的三视图都是大小相同的圆,故选项符合题意.D、圆锥的三视图分别为等腰三角形,等腰三角形,含圆心的圆,故选项不符合题意;故选C.【点睛】本题考查了三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体.6、C【分析】①③,根据已知把∠ABD,∠CBD,∠A角度确定相等关系,得到等腰三角形证明腰相等即可;②通过证△ABC∽△BCD,从而确定②是否正确,根据AD=BD=BC,即解得BC=AC,故④正确.【详解】①BC是⊙A的内接正十边形的一边,因为AB=AC,∠A=36°,所以∠ABC=∠C=72°,又因为BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=∠ABC=36°=∠A,∴AD=BD,∠BDC=∠ABD+∠A=72°=∠C,∴BC=BD,∴BC=BD=AD,正确;又∵△ABD中,AD+BD>AB∴2AD>AB,故③错误.②根据两角对应相等的两个三角形相似易证△ABC∽△BCD,∴,又AB=AC,故②正确,根据AD=BD=BC,即,解得BC=AC,故④正确,故选C.【点睛】本题主要考查圆的几何综合,解决本题的关键是要熟练掌握圆的基本性质和几何图形的性质.7、A【分析】如图(见解析),作于H,在中,由可以求出AH的长,再在中,由即可求出AE的长.【详解】如图,作于H在中,则在中,则故选:A.【点睛】本题考查了锐角三角函数,熟记常见角度的三角函数值是解题关键.8、B【解析】试题分析:解:如图:根据题意可知::△AFO∽△ABD,OF=EF=30cm∴,∴∴CD=72cm,∵tanα=∴∴AD==180cm.故选B.考点:解直角三角形的应用.9、B【分析】连接OA,OB,OC,根据切线的性质得到∠OAC=∠OBC=90°,AC=BC,推出△AOB是等边三角形,得到OA=AB=60,根据弧长的计算公式即可得到结论.【详解】解:连接OA,OB,OC,∵AC与BC是⊙O的切线,∠C=120°,∴∠OAC=∠OBC=90°,AC=BC,∴∠AOB=60°,∵OA=OB,∴△AOB是等边三角形,∴OA=AB=60,∴公路AB的长度==20πm,故选:B.【点睛】本题主要考察切线的性质及弧长,解题关键是连接OA,OB,OC推出△AOB是等边三角形.10、A【分析】根据比例尺=图上距离:实际距离,依题意列比例式直接求解即可.【详解】解:设这条道路的实际长度为x,则=,

解得x=300000cm=3km.

∴这条道路的实际长度为3km.

故选A.【点睛】本题考查成比例线段问题,能够根据比例尺正确进行计算,注意单位的转换11、A【分析】根据一元二次方程的定义解答.【详解】3x2−6x+1=0的二次项系数是3,一次项系数是−6,常数项是1.故答案选A.【点睛】本题考查的知识点是一元二次方程的一般形式,解题的关键是熟练的掌握一元二次方程的一般形式.12、C【解析】由图象得,此二次函数过原点(0,0),

把点(0,0)代入函数解析式得a2-1=0,解得a=±1;

又因为此二次函数的开口向上,所以a>0;

所以a=1.

故选C.二、填空题(每题4分,共24分)13、【解析】根据相似三角形的性质直接解答即可.解:∵两个相似三角形的周长比是1:3,∴它们的面积比是,即1:1.故答案为1:1.本题考查的是相似三角形的性质,即相似三角形(多边形)的周长的比等于相似比;面积的比等于相似比的平方.14、【分析】将x=2代入方程,列出含字母a的方程,求a值即可.【详解】解:∵x=2是方程的一个根,∴,解得,a=.故答案为:.【点睛】本题考查方程解的定义,理解定义,方程的解是使等式成立的未知数的值是解答此题的关键.15、【分析】过点D'作D'N⊥AC于点N,作D'M⊥BC于点M,由直角三角形的性质可得BC=4cm,AB=8cm,ED=DF=6cm,由“AAS”可证△D'NE'≌△D'MF',可得D'N=D'M,即点D'在射线CD上移动,且当E'D'⊥AC时,DD'值最大,则可求点D运动的路径长,【详解】解:∵AC=12cm,∠A=30°,∠DEF=45°∴BC=4cm,AB=8cm,ED=DF=6cm

如图,当点E沿AC方向下滑时,得△E'D'F',过点D'作D'N⊥AC于点N,作D'M⊥BC于点M∴∠MD'N=90°,且∠E'D'F'=90°∴∠E'D'N=∠F'D'M,且∠D'NE'=∠D'MF'=90°,E'D'=D'F'∴△D'NE'≌△D'MF'(AAS)∴D'N=D'M,且D'N⊥AC,D'M⊥CM∴CD'平分∠ACM即点E沿AC方向下滑时,点D'在射线CD上移动,∴当E'D'⊥AC时,DD'值最大,最大值=ED-CD=(12-6)cm

∴当点E从点A滑动到点C时,点D运动的路径长=2×(12-6)=(24-12)cm【点睛】本题考查了轨迹,全等三角形的判定和性质,等腰直角三角形的性质,角平分线的性质,确定点D的运动轨迹是本题的关键.16、1【分析】根据菱形的性质可得菱形的边长为1,然后根据内角度数进而求出较短对角线的长.【详解】如图所示:菱形ABCD的周长为20,AB=20÷4=1,又,四边形ABCD是菱形,,AB=AD,是等边三角形,BD=AB=1.故答案为1.【点睛】本题主要考查菱形的性质及等边三角形,关键是熟练掌握菱形的性质.17、7.1【解析】根据平行线分线段成比例定理得到比例式,求出DF,根据BF=BD+DF,计算即可得答案.【详解】∵a∥b∥c,∴ACCE=BDDF,即46解得DF=4.1,∴BF=BD+DF=3+4.1=7.1,故答案为:7.1.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.18、【分析】过D作DM⊥AB,根据计算即得.【详解】过D作DM⊥AB,如下图:∵为的中点,以点为圆心,长为半径作弧,交于点∴AD=ED=CD∴,∵∴∴∵在中,∴∵∴∴∴,,∴,,∴故答案为:【点睛】本题考查了求解不规则图形的面积,解题关键是通过容斥原理将不规则图形转化为规则图形.三、解答题(共78分)19、(1)12;(2)见解析;(3)E(2,4),F(7,8).【分析】(1)用一个矩形的面积分别减去三个直角三角形的面积去计算△ABC的面积;

(2)利用网格特点和旋转的性质画出A、C的对应点A1、C1即可得到△A1BC1;

(3)利用平行线分线段成比例得到CF:BE=2,则EF三等分BC,然后写出E、F的坐标,根据勾股定理求出EF的长度为【详解】解:(1)△ABC的面积=4×7﹣×7×1﹣×3×3﹣×4×4=12;(2)如图,△A1BC1为所作;(3)如图,线段EF为所作,其中E点坐标为(2,4),F点坐标为(7,8),EF的长度为.【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了勾股定理.20、△ABD∽△CBE,△ODC∽△BEC,△OEA∽△BDA,△ODC∽△OEA,证明见解析【分析】由题意直接根据相似三角形的判定方法进行分析即可得出答案.【详解】解:图中相似的三角形有:△ABD∽△CBE,△ODC∽△BEC,△OEA∽△BDA,△ODC∽△OEA.∵AD、CE分别是△ABC的两条高,∴∠ADB=∠CDA=∠CEB=∠AEC=90°,∴∠B+∠BCE=90°,∠B+∠BAD=90°,∴∠BAD=∠BCE,∵∠EBC=∠ABD,∴△ABD∽CBE.【点睛】本题考查相似三角形的判定.注意掌握相似三角形的判定以及数形结合思想的应用.21、(1)甲、乙工程队每天能完成绿化的面积分别是、;(2);(3)安排甲队施工天,乙队施工天,施工总费用最低,最低费用为万元.【分析】(1)设乙工程队每天能完成绿化的面积是m2,根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列方程求解;(2)根据题意得到100x+50y=2400,整理得:y=-2x+48,即可解答;(3)根据甲乙两队施工的总天数不超过30天,得到x≥18,设施工总费用为w元,根据题意得:,根据一次函数的性质,即可解答.【详解】(1)设乙工程队每天能完成绿化面积是,根据题意得:,解得:,经检验,是原方程的解,则甲工程队每天能完成绿化的面积是答:甲、乙工程队每天能完成绿化的面积分别是、;(2)根据题意得:,整理得:,∴y与x的函数解析式为:.(3)∵甲乙两队施工的总天数不超过30天,

∴,∴,解得:,设施工总费用为元,根据题意得:,∵,∴随的增大而增大,当时,有最小值,最小值为万元,此时,,答:安排甲队施工天,乙队施工天,施工总费用最低,最低费用为万元.【点睛】本题考查了分式方程、一元一次不等式和一次函数的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程和不等式求解.掌握利用一次函数的增减性求最值的方法.22、(1);(2)销售单价为每千克60元时,日获利最大,最大获利为1900元.【分析】(1)根据图象利用待定系数法,即可求出直线解析式;(2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.【详解】解:(1)设一次函数关系式为由图象可得,当时,;时,.∴,解得∴与之间的关系式为(2)设该公司日获利为元,由题意得∵;∴抛物线开口向下;∵对称轴;∴当时,随着的增大而增大;∵,∴时,有最大值;.即,销售单价为每千克60元时,日获利最大,最大获利为1900元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在时取得。23、(1)6;(2)【分析】(1)根据点A坐标及三角形面积公式求得的值,从而求得的值;(2)延长交轴于点,根据旋转的性质可得,,然后判定四边形为矩形,用含m,n的式子表示出点C的坐标,将点A,C代入反比例解析式中,得到关于m的方程,解方程,从而求解.【详解】解:(1)∵,轴于点,∴,.又,∴.∵点在双曲线上,∴.(2)延长交轴于点.∵绕点逆时针旋转得到,∴,,∴,,.∵轴于点,∴,∴四边形为矩形,∴,∴轴,∴,∴,,∴.∵点都在双曲线上,∴,化简得.解法一:解关于的方程,得.∵,∴,∴.解法二:方程两边同时除以,得,解得.∵,∴.【点睛】本题考查反比例函数的应用,比例系数k的几何意义,旋转的性质,及一元二次方程的解法,综合性较强,利用数形结合思想解题是本题的解题关键.24、(1)y=﹣x2+2x+8,其顶点为(1,9)(2)y=﹣x2+2x+3【分析】(1)根据对称轴为直线x=1的抛物线y=ax2+bx+8过点(﹣2,0),可得,解得即可求解,(2)设令平移后抛物线为,可得D(1,k),B(0,k-1),且,根据BC平行于x轴,可得点C与点B关于对称轴x=1对称,可得C(2,k-1),根据,解得,即.作DH⊥BC于H,CT⊥x轴于T,则在△DBH中,HB=HD=1,∠DHB=90°,又AC∥BD,得△CTA∽△DHB,所以CT=AT,即,解得k=4,即可求平移后

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论