2023-2024学年甘肃省武威五中学九年级数学第一学期期末检测试题含解析_第1页
2023-2024学年甘肃省武威五中学九年级数学第一学期期末检测试题含解析_第2页
2023-2024学年甘肃省武威五中学九年级数学第一学期期末检测试题含解析_第3页
2023-2024学年甘肃省武威五中学九年级数学第一学期期末检测试题含解析_第4页
2023-2024学年甘肃省武威五中学九年级数学第一学期期末检测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年甘肃省武威五中学九年级数学第一学期期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,四边形内接于,为直径,,过点作于点,连接交于点.若,,则的长为()A.8 B.10 C.12 D.162.如图,在矩形中,于,设,且,,则的长为()A. B. C. D.3.以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A. B. C. D.4.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是()A. B. C. D.5.如图,某数学兴趣小组将长为,宽为的矩形铁丝框变形为以为圆心,为半径的扇形(忽略铁丝的粗细),则所得扇形的面积为()A. B. C. D.6.下列各点在反比例函数y=-图象上的是()A.(3,2) B.(2,3) C.(-3,-2) D.(-,2)7.如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A处看乙楼楼顶B处仰角为30°,则甲楼高度为()A.11米 B.(36﹣15)米 C.15米 D.(36﹣10)米8.如图,四边形ABCD和四边形A'B'C'D'是以点O为位似中心的位似图形,若OA:OA'=3:5,则四边形ABCD和四边形A'B'C'D'的面积比为()A.3:5 B.3:8 C.9:25 D.:9.如图,在Rt△ABC内有边长分别为a,b,c的三个正方形.则a、b、c满足的关系式是()A.b=a+c B.b=ac C.b2=a2+c2 D.b=2a=2c10.已知反比例函数y=﹣,下列结论不正确的是()A.图象必经过点(﹣1,3) B.若x>1,则﹣3<y<0C.图象在第二、四象限内 D.y随x的增大而增大二、填空题(每小题3分,共24分)11.如图,在边长为1的正方形网格中,.线段与线段存在一种变换关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,则这个旋转中心的坐标为__________.12.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=70°,则∠EAC的度数为____________.13.如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为_____.14.函数是反比例函数,且图象位于第二、四象限内,则n=____.15.Rt△ABC中,∠C=90°,AB=10,,则BC的长为____________.16.如图△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=,则BC的长为_____.17.若代数式5x-5与2x-9的值互为相反数,则x=________.18.在平面直角坐标系中,点P(5,﹣3)关于原点对称的点的坐标是___.三、解答题(共66分)19.(10分)在平面直角坐标系中,直线与反比例函数图象的一个交点为,求的值.20.(6分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象分别相交于第一、三象限内的,两点,与轴交于点.(1)求该反比例函数和一次函数的解析式;(2)在轴上找到一点使最大,请直接写出此时点的坐标.21.(6分)如图1,抛物线与轴交于,两点,过点的直线分别与轴及抛物线交于点(1)求直线和抛物线的表达式(2)动点从点出发,在轴上沿的方向以每秒1个单位长度的速度向左匀速运动,设运动时间为秒,当为何值时,为直角三角形?请直接写出所有满足条件的的值.(3)如图2,将直线沿轴向下平移4个单位后,与轴,轴分别交于,两点,在抛物线的对称轴上是否存在点,在直线上是否存在点,使的值最小?若存在,求出其最小值及点,的坐标,若不存在,请说明理由.22.(8分)已知抛物线,求证:无论为何值,抛物线与轴总有两个交点.23.(8分)在一个不透明的袋子中装有3个乒乓球,分别标有数字1,2,3,这些乒乓球除所标数字不同外其余均相同.先从袋子中随机摸出1个乒乓球,记下标号后放回,再从袋子中随机摸出1个乒乓球记下标号,用画树状图(或列表)的方法,求两次摸出的乒乓球标号之和是偶数的概率.24.(8分)如图,在某建筑物上,挂着“缘分天注定,悠然在潜山”的宣传条幅,小明站在点处,看条幅顶端,测得仰角为,再往条幅方向前行30米到达点处,看到条幅顶端,测得仰角为,求宣传条幅的长.(注:不计小明的身高,结果精确到1米,参考数据,)25.(10分)抛物线与轴交于A,B两点,与轴交于点C,连接BC.(1)如图1,求直线BC的表达式;(2)如图1,点P是抛物线上位于第一象限内的一点,连接PC,PB,当△PCB面积最大时,一动点Q从点P从出发,沿适当路径运动到轴上的某个点G处,再沿适当路径运动到轴上的某个点H处,最后到达线段BC的中点F处停止,求当△PCB面积最大时,点P的坐标及点Q在整个运动过程中经过的最短路径的长;(3)如图2,在(2)的条件下,当△PCB面积最大时,把抛物线向右平移使它的图象经过点P,得到新抛物线,在新抛物线上,是否存在点E,使△ECB的面积等于△PCB的面积.若存在,请求出点E的坐标,若不存在,请说明理由.26.(10分)已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),tan∠BAC=.(1)写出点B的坐标;(2)在x轴上找一点D,连接BD,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,如果点P从点A出发,以2cm/秒的速度沿AB向点B运动,同时点Q从点D出发,以1cm/秒的速度沿DA向点A运动.当一个点停止运动时,另一个点也随之停止运动.设运动时间为t.问是否存在这样的t使得△APQ与△ADB相似?如存在,请求出t的值;如不存在,请说明理由.

参考答案一、选择题(每小题3分,共30分)1、C【解析】连接,如图,先利用圆周角定理证明得到,再根据正弦的定义计算出,则,,接着证明,利用相似比得到,所以,然后在中利用正弦定义计算出的长.【详解】连接,如图,∵为直径,∴,∵,∴,而,∴,∵,∴,而,∴,∴,∴,在中,∵,∴,∴,,∵,,∴,∴,即,∴,∴,在中,∵,∴,故选C.【点睛】本题考查了圆周角定理,解直角三角形,熟练掌握“在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径”是解题的关键.2、C【分析】根据矩形的性质可知:求AD的长就是求BC的长,易得∠BAC=∠ADE,于是可利用三角函数的知识先求出AC,然后在直角△ABC中根据勾股定理即可求出BC,进而可得答案.【详解】解:∵四边形ABCD是矩形,∴∠B=∠BAC=90°,BC=AD,∴∠BAC+∠DAE=90°,∵,∴∠ADE+∠DAE=90°,∴∠BAC=,在直角△ABC中,∵,,∴,∴AD=BC=.故选:C.【点睛】本题考查了矩形的性质、勾股定理和解直角三角形的知识,属于常考题型,熟练掌握矩形的性质和解直角三角形的知识是解题关键.3、D【解析】由于内接正三角形、正方形、正六边形是特殊内角的多边形,可构造直角三角形分别求出边心距的长,由勾股定理逆定理可得该三角形是直角三角形,进而可得其面积.【详解】如图1,∵OC=1,∴OD=1×sin30°=;如图2,∵OB=1,∴OE=1×sin45°=;如图3,∵OA=1,∴OD=1×cos30°=,则该三角形的三边分别为:、、,∵()2+()2=()2,∴该三角形是以、为直角边,为斜边的直角三角形,∴该三角形的面积是,故选:D.【点睛】考查正多边形的外接圆的问题,应用边心距,半径和半弦长构成直角三角形,来求相关长度是解题关键。4、C【分析】根据列表法列出所有的可能情况,从中找出两个球颜色相同的结果数,再利用概率的公式计算即可得到答案.【详解】解:列表如图所示:由表可知,共有9种等可能结果,其中摸出的两个球颜色相同的有4种结果所以摸出两个球颜色相同的概率是故选:C.【点睛】本题考查的是列表法与树状图的知识,解题的关键是能够用列表或者树状图将所有等可能结果列举出来.5、B【分析】根据已知条件可得弧BD的弧长为6,然后利用扇形的面积公式:计算即可.【详解】解:∵矩形的长为6,宽为3,

∴AB=CD=6,AD=BC=3,

∴弧BD的长=18-12=6,故选:B.【点睛】此题考查了扇形的面积公式,解题的关键是:熟记扇形的面积公式6、D【分析】将各选项点的横坐标代入,求出函数值,判断是否等于纵坐标即可.【详解】解:A.将x=3代入y=-中,解得y=-2,故(3,2)不在反比例函数y=-图象上,故A不符合题意;B.将x=2代入y=-中,解得y=-3,故(2,3)不在反比例函数y=-图象上,故B不符合题意;C.将x=-3代入y=-中,解得y=2,故(-3,-2)不在反比例函数y=-图象上,故C不符合题意;D.将x=-代入y=-中,解得y=2,故(-,2)在反比例函数y=-图象上,故D符合题意;故选:D.【点睛】此题考查的是判断一个点是否在反比例函数图象上,解决此题的关键是将点的横坐标代入,求出函数值,判断是否等于纵坐标即可.7、D【分析】分析题意可得:过点A作AE⊥BD,交BD于点E;可构造Rt△ABE,利用已知条件可求BE;而乙楼高AC=ED=BD﹣BE.【详解】解:过点A作AE⊥BD,交BD于点E,在Rt△ABE中,AE=30米,∠BAE=30°,∴BE=30×tan30°=10(米),∴AC=ED=BD﹣BE=(36﹣10)(米).∴甲楼高为(36﹣10)米.故选D.【点睛】此题主要考查三角函数的应用,解题的关键是熟知特殊角的三角函数值.8、C【分析】根据题意求出两个相似多边形的相似比,根据相似多边形的性质解答.【详解】∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA:OA′=3:5,∴DA:D′A′=OA:OA′=3:5,∴四边形ABCD与四边形A′B′C′D′的面积比为:9:1.故选:C.【点睛】本题考查位似的性质,根据位似图形的面积比等于位似比的平方可得,位似图形即特殊的相似图形,运用相似图形的性质是解题的关键.9、A【分析】利用解直角三角形知识.在边长为a和b两正方形上方的两直角三角形中由正切可得,化简得b=a+c,故选A.【详解】请在此输入详解!10、D【解析】A.

∵(−1)×3=−3,∴图象必经过点(−1,3),故正确;B.

∵k=−3<0,∴函数图象的两个分支分布在第二、四象限,故正确;C.

∵x=1时,y=−3且y随x的增大而而增大,∴x>1时,−3<y<0,故正确;D.函数图象的两个分支分布在第二、四象限,在每一象限内,y随x的增大而增大,故错误.故选D.二、填空题(每小题3分,共24分)11、或【分析】根据旋转后的对应关系分类讨论,分别画出对应的图形,作出对应点连线的垂直平分线即可找到旋转中心,最后根据点A的坐标即可求结论.【详解】解:①若旋转后点A的对应点是点C,点B的对称点是点D,连接AC和BD,分别作AC和BD的垂直平分线,两个垂直平分线交于点O,根据垂直平分线的性质可得OA=OC,OB=OD,故点O即为所求,∵,∴由图可知:点O的坐标为(5,2);②若旋转后点A的对应点是点D,点B的对称点是点C,连接AD和BC,分别作AD和BC的垂直平分线,两个垂直平分线交于点O,根据垂直平分线的性质可得OA=OD,OB=OC,故点O即为所求,∵,∴由图可知:点O的坐标为综上:这个旋转中心的坐标为或故答案为:或.【点睛】此题考查的是根据旋转图形找旋转中心,掌握垂直平分线的性质及作法是解决此题的关键.12、【分析】根据菱形的性质求∠ACD的度数,根据圆内接四边形的性质求∠AEC的度数,由三角形的内角和求解.【详解】解:∵四边形ABCD是菱形,∴AD∥BC,AD=DC,∴∠DAC=∠ACB,∠DAC=∠DCA∵∠D=70°,∴∠DAC=,∴∠ACB=55°,∵四边形ABCD是⊙O的内接四边形,∴∠AEC+∠D=180°,∴∠AEC=180°-70°=110°,∴∠EAC=180°-∠AEC-∠ACB=180°-55°-110°=15°,∴∠EAC=15°.故答案为:15°【点睛】本题考查了菱形的性质,三角形的内角和,圆内接四边形的性质,熟练掌握菱形的性质和圆的性质是解答此题的关键.13、110°【解析】试题分析:∵∠A=50°,∴∠BOC=2∠A=100°,∵∠B=30°,∠BOC=∠B+∠BDC,∴∠BDC=∠BOC﹣∠B=100°﹣30°=70°,∴∠ADC=180°﹣∠BDC=110°,故答案为110°.考点:圆周角定理.14、-1.【分析】根据反比例函数的定义与性质解答即可.【详解】根据反比函数的解析式y=(k≠0),故可知n+1≠0,即n≠-1,且n1-5=-1,解得n=±1,然后根据函数的图像在第二、四三象限,可知n+1<0,解得n<-1,所以可求得n=-1.故答案为:-1【点睛】本题考查反比例函数的定义与性质,熟记定义与性质是解题的关键.15、1【分析】由cosB==可设BC=3x,则AB=5x,根据AB=10,求得x的值,进而得出BC的值即可.【详解】解:如图,

∵Rt△ABC中,cosB==,

∴设BC=3x,则AB=5x=10,∴x=2,BC=1,故答案为:1.【点睛】本题考查了解直角三角形,熟练掌握三角函数的定义及勾股定理是解题的关键.16、4【解析】试题解析:∵可∴设DC=3x,BD=5x,又∵MN是线段AB的垂直平分线,∴AD=DB=5x,又∵AC=8cm,∴3x+5x=8,解得,x=1,在Rt△BDC中,CD=3cm,DB=5cm,故答案为:4cm.17、2【解析】由5x-5的值与2x-9的值互为相反数可知:5x-5+2x-9=0,解此方程即可求得答案.【详解】由题意可得:5x-5+2x-9=0,移项,得7x=14,系数化为1,得x=2.【点睛】本题考查了相反数的性质以及一元一次方程的解法.18、(﹣5,3)【详解】解:关于原点对称的点的坐标是横、纵坐标都互为相反数,从而点P(5,﹣3)关于原点对称的点的坐标是(﹣5,3).故答案为:(﹣5,3).三、解答题(共66分)19、【分析】把点A代入直线解析式求出点A的坐标,然后再代入反比例函数解析式求出k值即可.【详解】解:∵直线与反比例函数的图象的一个交点为∴2=-a+4,即a=2∴点A坐标为(2,2)∴,即k=4.【点睛】本题考查了反比例函数和一次函数的交点问题,即点A即在直线上又在双曲线上,代入求值即可.20、(1),;(2)【分析】(1)利用待定系数法由点A坐标可求反比例函数,然后计算出B的坐标,于是可求一次函数的解析式;

(2)根据一次函数与y轴的交点P,此交点即为所求.【详解】解:(1)把代入,可得,反比例函数的解析式为把点代入,可得,.把,代入,可得解得一次函数的解析式为;(2)一次函数的解析式为y1=x+2,令x=0,则y=2,

∴一次函数与y轴的交点为P(0,2),

此时,PB-PC=BC最大,P即为所求.【点睛】本题考查了反比例函数与一次函数的交点问题,待定系数法求反比例函数和一次函数的解析式,正确掌握反比例函数的性质是解题的关键.21、(1),;(2)或3或4或12;(3)存在,,,最小值【分析】(1)利用待定系数法求解即可;(2)先求点D坐标,再求点C坐标,然后分类讨论即可;(3)通过做对称点将折线转化成两点间距离,用两点之间线段最短来解答即可.【详解】解:(1)把代入,得解得,∴抛物线解析式为,∵过点B的直线,∴把代入,解得,∴直线解析式为(2)联立,解得或,所以,直线:与轴交于点,则,根据题意可知线段,则点则,,因为为直角二角形①若,则,化简得:,或②若,则,化简得③若,则,化简得综上所述,或3或4或12,满足条件(3)在抛物线上取点的对称点,过点作于点,交抛物线对称轴于点,过点作于点,此时最小抛物线的对称轴为直线,则的对称点为,直线的解析式为因为,设直线:,将代入得,则直线:,联立,解得,则,联立,解得,则,【点睛】本题是一代代数综合题,考查了一次函数、二次函数和动点问题,能够充分调动所学知识是解题的关键.22、证明见解析【分析】求得判别式并分解得到平方与正数的和,得到判别式大于0即可证明.【详解】证明:.无论为何值,抛物线与轴总有两个交点.【点睛】此题考查一元二次方程的判别式,正确计算并掌握判别式的三种情况即可正确解题.23、图形见解析,概率为【分析】根据题意列出树形图,再利用概率公式计算即可.【详解】根据题意,列表如下:共有9种结果,并且它们出现的可能性相等,符合题意的结果有5种,.【点睛】本题考查概率的计算,关键在于熟悉树形图和概率公式.24、宣传条幅BC的长约为26米.【分析】先根据三角形的外角性质得出,再根据等腰三角形的判定可得BE的长,然后利用的正弦值求解即可.【详解】由题意得米(米)在中,,即(米)答:宣传条幅BC的长约为26米.【点睛】本题考查了等腰三角形的判定、解直角三角形等知识点,熟记正弦值的定义及特殊角的正弦值是解题关键.25、(1)(2)点Q按照要求经过的最短路径长为(3)存在,满足条件的点E有三个,即(,),(,),(,)【分析】(1)先求出点,,的坐标,利用待定系数法即可得出结论;(2)先确定出,再利用三角形的面积公式得出,即可得出结论;(3)先确定出平移后的抛物线解析式,进而求出,在判断出建立方程即可得出结论.【详解】解:(1)令,得,∴,.∴A(,0),B(,0).令,得.∴C(0,3).设直线BC的函数表达式为,把B(,0)代入,得.解得,.所以直线BC的函数表达式为.(2)过P作PD⊥轴交直线BC于M.∵直线BC表达式为,设点M的坐标为,则点P的坐标为.则.∴.∴此时,点P坐标为(,).根据题意,要求的线段PG+GH+HF的最小值,只需要把这三条线段“搬”在一直线上.如图1,作点P关于轴的对称点,作点F关于轴的对称点,连接,交轴于点G,交轴于点H.根据

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论