2023-2024学年安徽省合肥市行知学校九年级数学第一学期期末复习检测模拟试题含解析_第1页
2023-2024学年安徽省合肥市行知学校九年级数学第一学期期末复习检测模拟试题含解析_第2页
2023-2024学年安徽省合肥市行知学校九年级数学第一学期期末复习检测模拟试题含解析_第3页
2023-2024学年安徽省合肥市行知学校九年级数学第一学期期末复习检测模拟试题含解析_第4页
2023-2024学年安徽省合肥市行知学校九年级数学第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年安徽省合肥市行知学校九年级数学第一学期期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,OA、OB是⊙O的半径,C是⊙O上一点.若∠OAC=16°,∠OBC=54°,则∠AOB的大小是()A.70° B.72° C.74° D.76°2.如图,∠AOB是放置在正方形网格中的一个角,则tan∠AOB()A. B. C.1 D.3.一元二次方程x2﹣x﹣2=0的解是()A.x1=﹣1,x2=﹣2B.x1=1,x2=﹣2C.x1=1,x2=2D.x1=﹣1,x2=24.已知命题“关于的一元二次方程必有两个实数根”,则能说明该命题是假命题的的一个值可以是()A.1 B.2 C.3 D.45.如图,在菱形中,,,是的中点,将绕点逆时针旋转至点与点重合,此时点旋转至处,则点在旋转过程中形成的、线段、点在旋转过程中形成的与线段所围成的阴影部分的面积为()A. B. C. D.6.如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.2 B.3 C.5 D.67.如图,在平面直角坐标系中,Rt△ABO中,∠ABO=90°,OB边在x轴上,将△ABO绕点B顺时针旋转60°得到△CBD.若点A的坐标为(-2,2),则点C的坐标为()A.(,1) B.(1,) C.(1,2) D.(2,1)8.如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是的中点,则下列结论:①OC∥AE;②EC=BC;③∠DAE=∠ABE;④AC⊥OE,其中正确的有()A.1个 B.2个 C.3个 D.4个9.﹣2019的倒数的相反数是()A.﹣2019 B. C. D.201910.我市某家快递公司,今年8月份与10月份完成投递的快递总件数分别为6万件和8.5万件,设该快递公司这两个月投递总件数的月平均增长率为x,则下列方程正确的是()A.6(1+x)=8.5B.6(1+2x)=8.5C.6(1+x)2=8.5D.6+6(1+x)+6(1+x)2=8.5二、填空题(每小题3分,共24分)11.一元二次方程x(x﹣3)=3﹣x的根是____.12.计算sin60°tan60°-cos45°cos60°的结果为______.13.一个容器盛满纯药液40L,第一次倒出若干升后,用水加满;第二次又倒出同样体积的溶液,这时容器里只剩下纯药液10L,则每次倒出的液体是__________L.14.如图,在轴的正半轴上依次截取……,过点、、、、……,分别作轴的垂线与反比例函数的图象相交于点、、、、……,得直角三角形、,,,……,并设其面积分别为、、、、……,则__.的整数).15.已知一组数据:4,2,5,0,1.这组数据的中位数是_____.16.已知如图,是的中位线,点是的中点,的延长线交于点A,那么=__________.17.若关于x的一元二次方程有两个相等的实数根,则m的值为_________.18.已知:,则的值是_______.三、解答题(共66分)19.(10分)2019年11月5日,第二届中国国际进口博览会(The2ndChinaInternationallmportExpo)在上海国家会展中心开幕.本次进博会将共建开放合作、创新共享的世界经济,见证海纳百川的中国胸襟,诠释兼济天下的责任担当.小滕、小刘两人想到四个国家馆参观:.中国馆;.俄罗斯馆;.法国馆;.沙特阿拉伯馆.他们各自在这四个国家馆中任意选择一个参观,每个国家馆被选择的可能性相同.(1)求小滕选择.中国馆的概率;(2)用画树状图或列表的方法,求小滕和小刘恰好选择同一国家馆的概率.20.(6分)如图,圆的内接五边形ABCDE中,AD和BE交于点N,AB和EC的延长线交于点M,CD∥BE,BC∥AD,BM=BC=1,点D是的中点.(1)求证:BC=DE;(2)求证:AE是圆的直径;(3)求圆的面积.21.(6分)如图,点在的直径的延长线上,点在上,且AC=CD,∠ACD=120°.(1)求证:是的切线;(2)若的半径为2,求图中阴影部分的面积.22.(8分)如图所示,是的直径,其半径为,扇形的面积为.(1)求的度数;(2)求的长度.23.(8分)如图,在的直角三角形中,,是直角边所在直线上的一个动点,连接,将绕点逆时针旋转到,连接,.(1)如图①,当点恰好在线段上时,请判断线段和的数量关系,并结合图①证明你的结论;(2)当点不在直线上时,如图②、图③,其他条件不变,(1)中结论是否成立?若成立,请结合图②、图③选择一个给予证明;若不成立,请直接写出新的结论.24.(8分)如图,在平面直角坐标系xOy中,已知四边形DOBC是矩形,且D(0,4),B(6,0).若反比例函数(x>0)的图象经过线段OC的中点A,交DC于点E,交BC于点F.设直线EF的解析式为y2=k2x+b.(1)求反比例函数和直线EF的解析式;(温馨提示:平面上有任意两点M(x1,y1)、N(x2,y2),它们连线的中点P的坐标为())(2)求△OEF的面积;(3)请结合图象直接写出不等式k2x-b﹣>0的解集.25.(10分)如图,梯形ABCD中,,点在上,连与的延长线交于点G.(1)求证:;(2)当点F是BC的中点时,过F作交于点,若,求的长.26.(10分)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD.(1)求证:BD平分∠ABC;(2)当∠ODB=30°时,求证:BC=OD.

参考答案一、选择题(每小题3分,共30分)1、D【解析】连接OC,根据等腰三角形的性质得到∠OAC=∠OCA=16°;∠OBC=∠OCB=54°求出∠ACB的度数,然后根据同圆中同弧所对的圆周角等于圆心角的一半求解.【详解】解:连接OC∵OA=OC,OB=OC∴∠OAC=∠OCA=16°;∠OBC=∠OCB=54°∴∠ACB=∠OCB-∠OCA=54°-16°=38°∴∠AOB=2∠ACB=76°故选:D【点睛】本题考查的是等腰三角形的性质及同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半,掌握相关性质定理是本题的解题关键.2、C【分析】连接AB,分别利用勾股定理求出△AOB的各边边长,再利用勾股定理逆定理求得△ABO是直角三角形,再求tan∠AOB的值即可.【详解】解:连接AB如图,利用勾股定理得,,∵,,∴∴利用勾股定理逆定理得,△AOB是直角三角形∴tan∠AOB==故选C【点睛】本题考查了在正方形网格中,勾股定理及勾股定理逆定理的应用.3、D【解析】试题分析:利用因式分解法解方程即可.解:(x﹣2)(x+1)=0,x﹣2=0或x+1=0,所以x1=2,x2=﹣1.故选D.考点:解一元二次方程-因式分解法.4、A【分析】根据判别式的意义,当m=1时,△<0,从而可判断原命题为是假命题.【详解】,解:△=n2-4,当n=1时,△<0,方程没有实数根,当n=2时,△=0,方程有两个相等的实数根,当n=3时,△>0,方程有两个不相等的实数根,当n=4时,△>0,方程有两个不相等的实数根,故选:A【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.5、C【分析】根据菱形的性质可得AD=AB=4,∠DAB=180°-,AE=,然后根据旋转的性质可得:S△ABE=S△ADF,∠FAE=∠DAB=60°,最后根据S阴影=S扇形DAB+S△ADF―S△ABE―S扇形FAE即可求出阴影部分的面积.【详解】解:∵在菱形中,,,是的中点,∴AD=AB=4,∠DAB=180°-,AE=,∵绕点逆时针旋转至点与点重合,此时点旋转至处,∴S△ABE=S△ADF,∠FAE=∠DAB=60°∴S阴影=S扇形DAB+S△ADF―S△ABE―S扇形FAE=S扇形DAB―S扇形FAE==故选:C.【点睛】此题考查的是菱形的性质、旋转的性质和扇形的面积公式,掌握菱形的性质定理、旋转的性质和扇形的面积公式是解决此题的关键.6、C【解析】试题分析:连接EF交AC于点M,由四边形EGFH为菱形可得FM=EM,EF⊥AC;利用”AAS或ASA”易证△FMC≌△EMA,根据全等三角形的性质可得AM=MC;在Rt△ABC中,由勾股定理求得AC=,且tan∠BAC=;在Rt△AME中,AM=AC=,tan∠BAC=可得EM=;在Rt△AME中,由勾股定理求得AE=2.故答案选C.考点:菱形的性质;矩形的性质;勾股定理;锐角三角函数.7、B【解析】作CH⊥x轴于H,如图,∵点A的坐标为(−2,),AB⊥x轴于点B,∴tan∠BAC=,∴∠A=,∵△ABO绕点B逆时针旋转60∘得到△CBD,∴BC=BA=,OB=2,∠CBH=,在Rt△CBH中,,,OH=BH−OB=3−2=1,∴故选:B.【点睛】根据直线解析式求出点A的坐标,然后求出AB、OB,再利用勾股定理列式求出OA,然后判断出∠C=30°,CD∥x轴,再根据直角三角形30°角所对的直角边等于斜边的一半求出BE,利用勾股定理列式求出CE,然后求出点C的横坐标,再写出点C的坐标即可.8、C【分析】由C为弧EB中点,利用垂径定理的逆定理得到OC垂直于BE,根据等弧对等弦得到BC=EC,再由AB为直角,利用圆周角定理得到AE垂直于BE,进而得到一对直角相等,利用同位角相等两直线平行得到OC与AE平行,由AD为圆的切线,利用切线的性质得到AB与DA垂直,利用同角的余角相等得到∠DAE=∠ABE,根据E不一定为弧AC中点,可得出AC与OE不一定垂直,即可确定出结论成立的序号.【详解】解:∵C为的中点,即,∴OC⊥BE,BC=EC,选项②正确;设AE与CO交于F,∴∠BFO=90°,∵AB为圆O的直径,∴AE⊥BE,即∠BEA=90°,∴∠BFO=∠BEA,∴OC∥AE,选项①正确;∵AD为圆的切线,∴∠DAB=90°,即∠DAE+∠EAB=90°,∵∠EAB+∠ABE=90°,∴∠DAE=∠ABE,选项③正确;点E不一定为中点,故E不一定是中点,选项④错误,则结论成立的是①②③,故选:C.【点睛】此题考查了切线的性质,圆周角定理,平行线的判定,以及垂径定理,熟练掌握性质及定理是解本题的关键.9、C【分析】先求-2019的倒数,再求倒数的相反数即可;【详解】解:﹣2019的倒数是,的相反数为,故答案为:C.【点睛】本题考查倒数和相反数.熟练掌握倒数和相反数的求法是解题的关键.10、C【解析】由题意可得9月份的快递总件数为6(1+x)万件,则10月份的快递总件数为6(1+x)(1+x)万件.【详解】解:由题意可得6(1+x)2=8.5,故选择C.【点睛】理解后一个月的快递数量是以前一个月的快递数量为基础的是解题关键.二、填空题(每小题3分,共24分)11、x1=3,x2=﹣1.【分析】整体移项后,利用因式分解法进行求解即可.【详解】x(x﹣3)=3﹣x,x(x﹣3)-(3﹣x)=0,(x﹣3)(x+1)=0,∴x1=3,x2=﹣1,故答案为x1=3,x2=﹣1.12、1【分析】直接利用特殊角的三角函数值分别代入求出答案.【详解】解:原式=1【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.13、1【分析】设每次倒出液体xL,第一次倒出后还有纯药液(40﹣x),药液的浓度为,再倒出xL后,倒出纯药液•x,利用40﹣x﹣•x就是剩下的纯药液10L,进而可得方程.【详解】解:设每次倒出液体xL,由题意得:40﹣x﹣•x=10,解得:x=60(舍去)或x=1.答:每次倒出1升.故答案为1.【点睛】本题考查一元二次方程的应用.14、【解析】根据反比例函数y=中k的几何意义再结合图象即可解答.【详解】∵过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,S=|k|.∴=1,=1,∵O=,∴==,同理可得,=1====.故答案是:.【点睛】本题考查反比例函数系数k的几何意义.15、1【分析】要求中位数,按从小到大的顺序排列后,找出最中间的一个数(或最中间的两个数的平均数)即可.【详解】解:从小到大排列此数据为:0,2,1,4,5,第1位是1,则这组数据的中位数是1.故答案为:1.【点睛】本题考查了中位数的定义,解决本题的关键是熟练掌握中位数的概念及中位数的确定方法.16、1:1【分析】连结AP并延长交BC于点F,则S△CPE=S△AEP,可得S△CPE:S△ADE=1:2,由DE//BC可得△ADE∽△ABC,可得S△ADE:S△ABC=1:4,则S△CPE:S△ABC=1:1.【详解】解:连结AP并延长交BC于点F,∵DE△ABC的中位线,∴E是AC的中点,∴S△CPE=S△AEP,∵点P是DE的中点,∴S△AEP=S△ADP,∴S△CPE:S△ADE=1:2,∵DE是△ABC的中位线,∴DE∥BC,DE:BC=1:2,∴△ADE∽△ABC,∴S△ADE:S△ABC=1:4,∴S△CPE:S△ABC=1:1.故答案为1:1.【点睛】本题考查三角形的中位线定理,相似三角形的判定和性质,三角形的面积等知识,解题的关键是熟练掌握基本知识.17、0【分析】根据一元二次方程根的判别式的正负判断即可.【详解】解:原方程可变形为,由题意可得所以故答案为:0【点睛】本题考查了一元二次方程,掌握根的判别式与一元二次方程的根的情况是解题的关键.18、【分析】根据已知等式设a=2k,b=3k,代入式子可求出答案.【详解】解:由,可设a=2k,b=3k,(k≠0),故:,故答案:.【点睛】此题主要考查比例的性质,a、b都用k表示是解题的关键.三、解答题(共66分)19、(1);(2).【分析】(1)由于每个国家馆被选择的可能性相同,即可得到中国馆被选中的概率为;(2)画树状图列出所有可能性,即可求出概率.【详解】.解:(1)在这四个国家馆中任选一个参观,每个国家馆被选择的可能性相同∴在这四个国家馆中小滕选择.中国馆的概率是;(2)画树状图分析如下:共有16种等可能的结果,小滕和小刘恰好选择同一国家馆参观的结果有4种∴小滕和小刘恰好选择同一国家馆参观的概率.【点睛】本题考查了树状图求概率,属于常考题型.20、(1)证明见解析;(2)证明见解析;(3).【分析】(1)根据平行线得出∠DCE=∠CEB,求出即可;(2)求出AB=BC=BM,得出△ACB和△BCM是等腰三角形,求出∠ACE=90°即可;(3)根据求出∠BEA=∠DAE=22.5°,∠BAN=45°,求出BN=1,,根据勾股定理求出AE2的值,即可求出答案.【详解】(1)证明:∵CD∥BE,∴∠DCE=∠CEB,∴,∴DE=BC;(2)证明:连接AC,∵BC∥AD,∴∠CAD=∠BCA,∴,∴AB=DC,∵点D是的中点,∴,∴CD=DE,∴AB=BC.又∵BM=BC,∴AB=BC=BM,即△ACB和△BCM是等腰三角形,在△ACM中,,∴∠ACE=90°,∴AE是圆的直径;(3)解:由(1)(2)得:,又∵AE是圆的直径,∴∠BEA=∠DAE=22.5°,∠BAN=45°,∴NA=NE,∴∠BNA=∠BAN=45°,∠ABN=90°,∴AB=BN,∵AB=BM=1,∴BN=1,∴.由勾股定理得:AE2=AB2+BE2=,∴圆的面积.【点睛】本题主要考察正多边形与圆、勾股定理、平行线的性质,解题关键是根据勾股定理求出AE2的值.21、(1)见解析(2)图中阴影部分的面积为π.【分析】(1)连接OC.只需证明∠OCD=90°.根据等腰三角形的性质即可证明;(2)先根据直角三角形中30°的锐角所对的直角边是斜边的一半求出OD,然后根据勾股定理求出CD,则阴影部分的面积即为直角三角形OCD的面积减去扇形COB的面积.【详解】(1)证明:连接OC.∵AC=CD,∠ACD=120°,∴∠A=∠D=30°.∵OA=OC,∴∠2=∠A=30°.∴∠OCD=∠ACD-∠2=90°,即OC⊥CD,∴CD是⊙O的切线;(2)解:∠1=∠2+∠A=60°.∴S扇形BOC==.在Rt△OCD中,∠D=30°,∴OD=2OC=4,∴CD==.∴SRt△OCD=OC×CD=×2×=.∴图中阴影部分的面积为:-.22、(1)60°;(2)【分析】(1)根据扇形面积公式求圆心角的度数即可;(2)由第一问,求得∠BOC的度数,然后利用弧长公式求解.【详解】由扇形面积公式得:∴的长度为:【点睛】本题考查扇形面积和弧长的求法,熟练掌握公式正确进行计算是本题的解题关键.23、(1),证明见解析;(2)图②、图③结论成立,证明见解析.【分析】(1)利用等边三角形的性质以及等腰三角形的判定解答即可;(2)过点E作EF⊥AB,垂足为F,证得△ADC≌△AEF,结合直角三角形中30度的角所对的直角边是斜边的一半解决问题;【详解】(1).证明如下:∵,,∴为等边三角形,∴,.∵,,∴,∴,∴,∴.(2)图②、图③结论成立.图②证明如下:如图②,过点作,垂足为.在中,,∴,∴,∴,∴.又,,∴,∴在中,,∴,∴,∴.∵为等边三角形,,∴.图③证明如下:如图③,过点作,垂足为.在中,,∴,∴,∴,∴.又,,∴,∴在中,,∴,∴,∴.∵为等边三角形,,∴.【点睛】本题考查等边三角形的性质,三角形全等的判定与性质,等腰三角形的判定与性质等知识点,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.24、(1)(2)(3)x<-6或-1.5<x<1【分析】(1)根据点A是OC的中点,可得A(3,2),可得反比例函数解析式为y1=,根据E(,4),F(6,1),运用待定系数法即可得到直线EF的解析式为y=-x+5;(2)过点E作EG⊥OB于G,根据点E,F都在反比例函数y1=的图象上,可得S△EOG=S△OBF,再根据S△EOF=S梯形EFBG进行计算即可;(3)根据点E,F关于原点对称的点的坐标分别为(-1.5,-4),(-6,-1),可得不等式k2x-b->1的解集为:x<-6或-1.5<x<1.【详解】(1)∵D(1,4),B(6,1),∴C(6,4),∵点A是OC的中点,∴A(3,2),把A(3,2)代入反比例函数y1=,可得k1=6,∴反比例函数解析式为y1=,把x=6代入y1=,可得y=1,则F(6,1),把y=4代入y1=,可得x=,则E(,4),把E(,4),F(6,1)代入y2=k2x+b,可得,解得,∴直线EF的解析式为y=-x+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论