22.1-二次函数(第1课时)教学设计(一等奖)_第1页
22.1-二次函数(第1课时)教学设计(一等奖)_第2页
22.1-二次函数(第1课时)教学设计(一等奖)_第3页
22.1-二次函数(第1课时)教学设计(一等奖)_第4页
22.1-二次函数(第1课时)教学设计(一等奖)_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

22.1二次函数(第1课时)教学设计

一、教学目标:

知识技能:

1.探索并归纳二次函数的定义;

2.能够表示简单变量之间的二次函数关系.

数学思考:

1.感悟新旧知识间的关系,让学生更深地体会数学中的类比思想方法;

2.经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的

方法描述变量之间的数量关系.

解决问题:

1.让学生学习了二次函数的定义后,能够表示简单变量之间的二次函数关系;

2.能够利用尝试求值的方法解决实际问题.进一步体会数学与生活的联系,增强用数学意

识。

情感态度:

1.把数学问题和实际问题相联系,从学生感兴趣的问题入手,能使学生积极参与数学学习活

动,对数学有好奇心和求知欲;

2.使学生初步体会数学与人类生活的密切联系及对人类历史发展的作用;

3.通过学生之间互相交流合作,让学生学会与人合作,并能与他人交流思维的过程,

培养大家的合作意识.

二、教学重点、难点:

教学重点:

1.经历探索和表示二次函数关系的过程,获得二次函数的定义。

2.能够表示简单变量之间的二次函数关系.

教学难点:

经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验.

三、教学方法:教师引导——自主探究——合作交流。

四、教具:小黑板

五、教学过程:

1.温故知新,引出课题。

1、大家还记得我们学过哪些函数吗?

2、它们是如何定义的?

3、我们分别从哪些方面对它们进行了研究?

2.实际问题,列出函数关系式,探究新知

问题1:已知正方体粉笔盒的棱长x,粉笔盒的表面积为y,探讨y与x有什么关系?

问题2:多边形的对角线数d与边数n有什么关系?[1]

问题3:某工厂一种产品的年产量是20件,计划今后两年增加产量。如果每年都比上一年

的产量增加x倍,那么两年后这种产品的产量将随计划所定的x的值而确定,y与x之间的关系

应怎样表示?[2]

学生活动:学生自主学习教材第4-5页,发现书中显性问题,找出隐含问题,提出新问题,

并尝试解决,记录解决问题的方案。然后,以小组为单位进行合作探究,讨论上述问题的解决方

案,并进行组际交流,确定疑难点。

师生活动:教师或者学生充当能者,对小组共同筛选出的问题、重难点进行部分教学,对关

键点进行点睛引导,师生互动,思维接龙,旨在突破难点。

预案:对问题1而言,如果学生不看展开图,直接说出答案,教师可追问:教材上展开图对

求面积有什么作用?提醒学生思考展开图问题。如果学生看了展开图,却不知道它有何用?教师

可追问:同学们,说一说符号语言y=6x中6的实际意义。请以小组为单位进行讨论。同时,对

2

学生讨论的结果作鼓励性评价。如学生的答案是y=4x•x+x+x时,老师务必当众大力表扬:你

2

2

的答案非常有创意,观察图很仔细,能够灵活利用书上的展开图求解,打破了思维定势,而且对

过去学过的基础知识、方法、思想、基本活动经验进行了整合,变成了自己解决问题的锋利武器,

你太有才了!同学们,这个同学就是我们学习的榜样,他今后很可能成为一位伟大的发明家。

对问题2而言,如果学生不能正确得到结论,教师用作图法引导:从一个顶点可以作多少条

对角线?n个顶点呢?从所有顶点作出的对角线是否有重复的?如果学生能得出正确结论,教师

也可追问:同学们,说一说符号语言

1中1的实际意义。请同学们先作图,再回答。

dnn3

2

2

同时,对他们的解题思路作点评,鼓励他们用不同方法发现规律,树立学习自信心。

设计意图:以粉笔盒为教具,通过对粉笔盒面积求法的探究,不但能给学生提供展示平台,

体验成功的机会,对学习产生自信,而且可以培养他们一题多解能力,筛选通法通解的意识。此

外,对简单的实际问题,列出二次函数关系式,既巩固了方程法求函数关系式的思想,又为二次

函数概念的形成提供感性素材。

3.观察式子,形成二次函数概念

问题4:观察:①y=6x;②

2

;③y=20x²+40x+20.

1

3

dn-n

2

2

2

想一想函数①②③有什么共同点?

师生活动:针对问题4,教师追问:同学们,函数关系式①、②、③究竟表示的是哪种函

数?能否给这种函数取个名字?学生仔细观察,讨论函数的共同点,由此给函数取名。当学生取

名困难时,老师可以从方法的角度进行诱导:根据函数表达式与自变量的关系,类比一次函数的

命名,让学生对函数y=ax+bx+c进行命名,引出二次函数概念。

2

设计意图:启发学生观察,思考,归纳三个函数关系式的共同点,通过类比方法,得出二次

函数的概念,培养学生类比迁移、归纳推理能力。

4.合作学习,理解二次函数概念

问题5:探讨二次函数y=ax+bx+c自变量x的取值范围及a、b、c的取值问题。

2

师生活动:学生围绕问题5进行小组讨论,并把讨论结果进行组际交流,确定疑难点。教

师对疑难点进行点拨。例如概念中“形如”二字,说明由形来定义函数名称。二次函数即y是

关于x的二次式,而且该二次式一定是整式。又如二次函数中b、c的取值范围,教师可用分类

讨论的方法进行点拨,得到二次函数三种特殊形式:(1)y=ax;(2)y=ax+c;(3)y=ax+bx.

2

2

2

设计意图:深入理解二次函数的概念,掌握二次函数的特征,为进一步学习二次函数图像打

下坚实的基础

练习:判断下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b.

(1)s=10πr²;(2)y=2²+2x;(3)y=ax+bx+c.

2

师生活动:学生根据二次函数的概念进行判断。教师在教室里来回走动,巡视学生们的练习

情况,并根据学生的反馈信息,作简要点评。

设计意图:对二次函数概念进行深入理解。

5.练习编题,运用二次函数概念

学生活动:根据生活实例,编一道含有二次函数关系式的应用题,并在课堂上展示交流。

设计意图:让学生体会生活问题与二次函数之间的密切关系,同时,培养学生命题能力,深

化对二次函数模型的认识。

6.课堂小结

通过本节课的学习,你有哪些收获?还有什么疑惑与师生交流。

师生活动:学生先小结,教师对学生的总结作点评和补充。

设计意图:让学生对本节课的知识、方法和数学思想进行梳理,培养他们整合知识能力和自

我建构知识体系的习惯。同时,教师还可以知道学生不懂的知识,便于在今后的教学中及时弥补。

7.布置作业

必做题:教科书习题26.1第1,2题,复习题26第1,2题;

m7是二次函数,求m的值。

y

(m3)x2

选作题:已知函数

设计意图:作业分必做和选做,体现新课标的分层教学思想、做中学的理念。

8.板书设计

26.1二次函数(第1课时)

一.二次函数概念的形成

1

3

2

①y=6x;

2

③y=20x²+40x+20.

mn

2-

n

2

二.二次函数概念的理解

1.二次函数的一般式:y=ax+bx+c(a、b、c为常数,且a0)

2

2.二次函数三种特例:(1)y=ax;(2)y=ax+c;(3)y=ax+bx.

2

2

2

三.二次函数概念的运用

设计意图:通过板书,展示教学环节,让学生感知本节内容,理解知识。

五.目标检测设计

1.判断下列函数是否为二次函数?请说明理由。

(1)s=3-2t²;

4;

(3)y=ax²+1.

2mn

2

n

2.已知函数

ya2x

2-5是关于x的二次函数,则a的取值范围是

.

设计意图:主要考查学生对二次函数概念的掌握。

3.篱笆墙长30m,靠墙围成一个矩形花坛,写出花坛面积y(m)与长x之间的函数关系式,

2

并指出自变量的取值范围.

设计意图:本题主要考查学生对实际问题列二次函数关系式的能力。

设计意图:启发学生观察,思考,归纳三个函数关系式的共同点,通过类比方法,得出二次

函数的概念,培养学生类比迁移、归纳推理能力。

4.合作学习,理解二次函数概念

问题5:探讨二次函数y=ax+bx+c自变量x的取值范围及a、b、c的取值问题。

2

师生活动:学生围绕问题5进行小组讨论,并把讨论结果进行组际交流,确定疑难点。教

师对疑难点进行点拨。例如概念中“形如”二字,说明由形来定义函数名称。二次函数即y是

关于x的二次式,而且该二次式一定是整式。又如二次函数中b、c的取值范围,教师可用分类

讨论的方法进行点拨,得到二次函数三种特殊形式:(1)y=ax;(2)y=ax+c;(3)y=ax+bx.

2

2

2

设计意图:深入理解二次函数的概念,掌握二次函数的特征,为进一步学习二次函数图像打

下坚实的基础

练习:判断下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b.

(1)s=10πr²;(2)y=2²+2x;(3)y=ax+bx+c.

2

师生活动:学生根据二次函数的概念进行判断。教师在教室里来回走动,巡视学生们的练习

情况,并根据学生的反馈信息,作简要点评。

设计意图:对二次函数概念进行深入理解。

5.练习编题,运用二次函数概念

学生活动:根据生活实例,编一道含有二次函数关系式的应用题,并在课堂上展示交流。

设计意图:让学生体会生活问题与二次函数之间的密切关系,同时,培养学生命题能力,深

化对二次函数模型的认识。

6.课堂小结

通过本节课的学习,你有哪些收获?还有什么疑惑与师生交流。

师生活动:学生先小结,教师对学生的总结作点评和补充。

设计意图:让学生对本节课的知识、方法和数学思想进行梳理,培养他们整合知识能力和自

我建构知识体系的习惯。同时,教师还可以知道学生不懂的知识,便于在今后的教学中及时弥补。

7.布置作业

必做题:教科书习题26.1第1,2题,复习题26第1,2题;

m7是二次函数,求m的值。

y

(m3)x2

选作题:已知函数

设计意图:作业分必做和选做,体现新课标的分层教学思想、做中学的理念。

8.板书设计

26.1二次函数(第1课时)

一.二次函数概念的形成

1

3

2

①y=6x;

2

③y=20x²+40x+20.

mn

2-

n

2

二.二次函数概念的理解

1.二次函数的一般式:y=ax+bx+c(a、b、c为常数,且a0)

2

2.二次函数三种特例:(1)y=ax;(2)y=ax+c;(3)y=ax+bx.

2

2

2

三.二次函数概念的运用

设计意图:通过板书,展示教学环节,让学生感知本节内容,理解知识。

五.目标检

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论