广安武圣2023-2024学年八年级上学期期末数学达标卷(含答案)_第1页
广安武圣2023-2024学年八年级上学期期末数学达标卷(含答案)_第2页
广安武圣2023-2024学年八年级上学期期末数学达标卷(含答案)_第3页
广安武圣2023-2024学年八年级上学期期末数学达标卷(含答案)_第4页
广安武圣2023-2024学年八年级上学期期末数学达标卷(含答案)_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

绝密★启用前广安武圣2023-2024学年八年级上学期期末数学达标卷考试范围:八年级上册(人教版);考试时间:120分钟注意事项:1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上评卷人得分一、选择题(共10题)1.(2022年湖南省衡阳市江山中学中考数学模拟试卷)下列说法中,错误的是()A.菱形的对角线互相平分B.正方形的对角线互相垂直平分C.矩形的对角线相等且平分D.等腰梯形的对角线相等且平分2.(安徽省八年级(上)月考数学试卷(三))能使得两个直角三角形全等的条件是()A.一组锐角对应相等B.两组锐角对应相等C.一组边对应相等D.两组边对应相等3.(2022年山东省泰安市中考数学模拟试卷(四)())一只小船顺流航行在甲、乙两个码头之间需a小时,逆流航行这段路程需b小时,那么一木块顺水漂流这段路需()小时.A.B.C.D.4.(广西桂林市德智外国语学校七年级(下)数学暑假作业(选择题))将一个正方形桌面砍去一个角后得到的桌面是()A.五边形B.四边形C.三边形D.以上都有可能5.(湖北省黄山市大冶市九年级(上)期末数学试卷)观察下列图案,既是轴对称图形又是中心对称图形的是()A.B.C.D.6.(2022年春•诸城市月考)下列各组数中,互为相反数的是()A.(-2)-3与23B.(-2)-2与2-2C.-33与(-)3D.(-3)-3与()37.如图,边长为3的正△ABC内接于⊙O,点P是上的动点,则PA+PB的最大值是()A.3B.2C.D.8.(四川省资阳市安岳县七年级(下)期末数学试卷)如图,在△ABC中,∠ACB=90°,CD是AB边上的高,如果∠A=50°,则∠DCB=()A.50°B.45°C.40°D.25°9.(广西桂林市德智外国语学校八年级(上)期末数学模拟试卷(1))下列是因式分解的是()A.4a2-4a+1=4a(a-1)+1B.x2-4y2=(x+4y)(x-4y)C.x2+y2=(x+y)2D.(xy)2-1=(xy+1)(xy-1)10.(山西省大同市矿区十二校联考八年级(上)期末数学试卷)如图,△BAC的外角∠CAE为120°,∠C=80°,则∠B为()A.60°B.40°C.30°D.45°评卷人得分二、填空题(共10题)11.(江苏省扬州市梅岭中学七年级(下)第一次月考数学试卷)若(x+y)2=(x-y)2+M,则M为.12.(江苏期末题)如图,AD、AE分别是△ABC的高和角平分线,∠B=20o,∠C=50o,则∠EAD=()o.13.(江苏省苏州市张家港二中七年级(下)期中数学试卷)(2021年春•张家港市校级期中)图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)将图②中的阴影部分面积用2种方法表示可得一个等式,这个等式为.(2)若m+2n=7,mn=3,利用(1)的结论求m-2n的值.14.(广东省肇庆市怀集县八年级(上)期末数学试卷)(2020年秋•怀集县期末)如图,△ABE≌△ACD,∠A=82°,∠B=18°,则∠ADC=.15.(2021•仓山区校级三模)在平面直角坐标系​xOy​​中,点​​A(xA​​,​​yA​)​​,点​​B(xB​​,​​yB​)​​,点​​C(xC②若​​xA​​+y③若​​xB​​+yC​=0​④若​​xB​​+xC​=0​16.图中的全等图形共有对.17.(陕西省汉中市佛坪中学八年级(上)期中数学试卷)因式分解:xy2-4x2-y4=.18.(新人教版八年级(上)寒假数学作业J(18))分母中含有的方程,叫做分式方程.19.(山东省威海市开发区九年级(上)期末数学试卷)(2020年秋•威海期末)如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,若AC=3AE,则tan∠ABC=.20.等边三角形ABC的顶点A的坐标是(-1,0),顶点B的坐标是(3,0),那么顶点C的坐标是.评卷人得分三、解答题(共7题)21.(2021•厦门二模)如图,在菱形​ABCD​​中,​AE⊥BC​​于点​E​​,​CF⊥AB​​于点​F​​.求证:​AF=CE​​.22.已知,如图,点A′、B′、C′、D′分别在正方形的边AB、BC、CD、DA上且AA′=BB′=CC′=DD′.(1)求证:四边形A′B′C′D′是正方形.(2)当点A′、B′、C′、D′处在什么位置时,正方形A′B′C′D′的面积是正方形ABCD面积的?请写出计算过程.23.(2012•遵义)化简分式​(xx-1-x​x24.(山东省德州市夏津县八年级(上)期末数学试卷)(1)计算:4-(-2)-2-32+(-3)0(x+1)2-(x+2)(x-2)(2)分解因式:m4-2m2+1(3)解方程:-=1.25.当x为何值时,分式的值为0?26.(2017•重庆)在​ΔABM​​中,​∠ABM=45°​​,​AM⊥BM​​,垂足为​M​​,点​C​​是​BM​​延长线上一点,连接​AC​​.(1)如图1,若​AB=32​​,​BC=5​​,求(2)如图2,点​D​​是线段​AM​​上一点,​MD=MC​​,点​E​​是​ΔABC​​外一点,​EC=AC​​,连接​ED​​并延长交​BC​​于点​F​​,且点​F​​是线段​BC​​的中点,求证:​∠BDF=∠CEF​​.27.(江苏省盐城市射阳二中八年级(上)期中数学试卷)如图,在Rt△ABC中,∠ACB=90°,E为AC上一点,且AE=BC,过点A作AD⊥CA,垂足为A,且AD=AC,AB、DE交于点F(1)判断线段AB与DE的数量关系和位置关系,并说明理由(2)连接BD、BE,若设BC=a,AC=b,AB=c,请利用四边形ADBE的面积证明勾股定理.参考答案及解析一、选择题1.【答案】【解答】解:A、菱形的对角线互相平分,正确;B、正方形的对角线互相垂直平分,正确;C、矩形的对角线相等且平分,正确;D、等腰梯形的对角线相等,错误.故选D.【解析】【分析】利用菱形,正方形,矩形,以及等腰梯形的性质判断即可.2.【答案】【解答】解:在Rt△ACB和Rt△DEF中,∠C=∠E=90°,A、一组锐角对应相等,不符合直角三角形全等的判定定理,不能推理两直角三角形全等,故本选项错误;B、两组锐角对应相等,不符合直角三角形全等的判定定理,不能推理两直角三角形全等,故本选项错误;C、一组边对应相等,不符合直角三角形全等的判定定理,不能推理两直角三角形全等,本选项错误;D、两组边对应相等不符合直角三角形全等的判定定理HL或SAS,能推理两直角三角形全等,故本选项正确;故选D.【解析】【分析】直角三角形全等的判定定理有SAS,ASA,AAS,SSS,HL,根据以上定理逐个判断即可.3.【答案】【答案】把甲乙两个码头之间的距离看作1,可求得小船顺水的速度及逆水的速度,让两个代数式相减后除以2即为漂流的速度,为1除以漂流的速度即为所求的时间.【解析】设甲乙两个码头之间的距离为1,小船顺流航行在甲、乙两个码头之间需a小时,逆流航行这段路程需b小时,∴小船顺水的速度为,逆水的速度为,∴漂流的速度为(-)÷2=,∴漂流的时间为1÷=,故选B.4.【答案】【解答】解:正方形桌面砍下一个角以后可能是:三角形或四边形或五边形,如下图所示:因而还剩下3个或4个或5个角.故选D【解析】【分析】正方形桌面砍下一个角以后可能是:三角形或四边形或五边形,由此可知桌子剩下的角的个数.5.【答案】【解答】解:A、不是轴对称图形,是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、不是轴对称图形,也不是中心对称图形.故错误.故选C.【解析】【分析】根据轴对称图形与中心对称图形的概念求解.6.【答案】【解答】解:A、(-2)-3=-,23=8,-与8不是相反数,故错误;B、(-2)-2=,2-2=,两个数相等,故错误;C、-33=-,(-)3=-,两个数相等,故错误;D、(-3)-3=-,()3=,互为相反数,正确;故选:D.【解析】【分析】先对各项化简,再根据相反数的定义即可解答.7.【答案】【解答】解:如图所示:连接PC,BO,截取PE=AP,过点A作AF⊥BC于点F,∵∠APC=60°,∴△PEA为等边三角形,∴AE=AP,∠PAE=60°,而∠CAB=60°,∴∠CAE=∠BAP,在△CAE和△BAP∴△CAE≌△BAP(SAS),∴PB=EC,∴PB+PA=PC,当PC是⊙O的直径,此时PA+PB最大,即点P是弧BA的中点,∵△ABC是⊙O的内接正三角形,∴BF=FC=,AC=3,∴AF=,∴设F0=x,则AO=2x,则3x=,故AO=,则PC=2,即PA+PB的最大值是2.故选:B.【解析】【分析】根据题意结合全等三角形的判定与性质得出当PC是⊙O的直径,此时PA+PB最大,进而结合等边三角形的性质得出PA+PB的最大值.8.【答案】【解答】解:∵在△ABC中,∠ACB=90°,∠A=50°,∴∠B=40°,∵CD是AB边上的高,∴∠CDB=90°,∴∠DCB=50°,故选A.【解析】【分析】根据直角三角形的性质得出∠B=40°,再利用CD是AB边上的高和直角三角形的性质解答即可.9.【答案】【解答】解:A、右边不是整式积是形式,故本选项错误;B、x2-4y2=(x+2y)(x-2y),故本选项错误;C、x2+2xy+y2=(x+y)2,故本选项错误;D、是因式分解,故本选项正确;故选D.【解析】【分析】根据把一个多项式写成几个整式积的形式叫做因式分解,对各选项分析判断后利用排除法求解.10.【答案】【解答】解:由三角形的外角性质得:∠CAE=∠B+∠C,∴∠B=∠CAE-∠C=120°-80°=40°;故选:B.【解析】【分析】由三角形的外角性质得出∠CAE=∠B+∠C,即可得出结果.二、填空题11.【答案】【解答】解:∵(x+y)2-(x-y)2=x2+2xy+y2-(x2-2xy+y2)=4xy,即M=4xy,故答案为:4xy.【解析】【分析】求出x+y)2-(x-y)2的值,即可得出答案.12.【答案】15°【解析】13.【答案】【解答】解:(1)(m+n)2-4mn=(m-n)2;故答案为:(m+n)2-4mn=(m-n)2(2)(m-2n)2=(m+2n)2-8mn=25,则m-2n=±5.【解析】【分析】(1)大正方形的面积减去矩形的面积即可得出阴影部分的面积,也可得出三个代数式(m+n)2、(m-n)2、mn之间的等量关系;(2)根据(1)所得出的关系式,可求出(m-2n)2,继而可得出m-2n的值.14.【答案】【解答】解:∵∠A=82°,∠B=18°,∴∠AEB=80°,∵△ABE≌△ACD,∴∠ADC=∠AEB=80°.故答案为:80°.【解析】【分析】根据三角形内角和定理求出∠AEB的度数,根据全等三角形的对应角相等解答即可.15.【答案】解:①由题意可知点​A​​、​B​​是第一象限在双曲线​y=kx(k>0)​​上的点,点​C​​​∴k=xA​∵​x​​∴yA​∴OA=​​∴OA=OB​​,故①正确;②​∵​x​​∴xA​∵k=​x​​∴yA​∴OA=​​∴OA=OC​​,故②正确;③​∵​xB​​​∴xB​​=-yc​​∴AB=​​BC=(​​AC=(​​∴ΔABC​​不是等腰三角形,故③错误;④​∵​x​​∴-xB​​∴C(-xB​​,又​∵​y​​∴A(yB​​,​​∴AC2​​BC2​​AB2​​∴BC2​∴ΔABC​​为直角三角形,故④正确;故答案为:①②④.【解析】①由​​xA​​=yB​​,可得​​yA​根据勾股定理可得到结论;③计算出​AB​​、​AC​​、​BC​​的长可得到结论;④计算出​AB​​、​AC​​、​BC​​的长,即可得到结论.本题主要考查反比例函数图象上点的坐标特征,勾股定理的逆定理,等腰三角形的定义,熟练掌握反比例函数图象和性质是解题的关键.16.【答案】【解答】解:(2)和(7)是全等形;(3)和(8)是全等形;共2对,故答案为:2.【解析】【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案.17.【答案】【解答】解:xy2-4x2-y4=-(4x2-xy2+y4)=-(y2-2x)2.故答案为:-(y2-2x)2.【解析】【分析】首先提取公因式-1,进而利用完全平方公式分解因式即可.18.【答案】【解答】解:分母中含有字母的方程叫做分式方程.故答案是:未知数.【解析】【分析】分式方程的定义:分母中含有未知数的方程叫做分式方程.19.【答案】【解答】解:连接BE,如下图所示,∵AB为⊙O的直径,∴∠AEB=90°,∵AC=3AE,AB=AC,∴设AE=x,则AB=AC=3x,∠ABC=∠C,∴BE===2x,∴tan∠C====,∴tan∠ABC=,故答案为:.【解析】【分析】要求tan∠ABC的值,只要求除∠C的正切值即可,因为AB=AC,则∠ABC=∠C,要求∠C的正切值,则需要构造直角三角形,因而连接BE,由于AB是直径,则∠BEA=90°,然后根据题目中的条件可以求出BE、CE的长,从而可以得到∠C的正切值,本题得以解决.20.【答案】【解答】解:AB=4,△ABC等边三角形,作线段AB的垂直平分线,交线段AB于D,以B点为圆心,4为半径画弧,与线段AB的垂直平分线交于C1,C2,连接AC1、AC2,∴C1D=4×sin60°=2,∵OD=1,C1、C2对称,且分布在第一、四象限∴C(1,2)或(1,-2),故答案为:(1,2)或(1,-2).【解析】【分析】因为AB=4,作线段AB的垂直平分线,交线段AB于D,以B点为圆心,6为半径画弧,与线段AB的垂直平分线交于C1、C2,连接AC1、AC2,在直角三角形BC1D中,解直角三角形得:C1D=2,所以(1,2)或(1,-2).三、解答题21.【答案】证明:​∵​四边形​ABCD​​是菱形,​∴AB=CB​​,​∵AE⊥BC​​,​CF⊥AB​​,​∴∠CFB=∠AEB=90°​​,在​ΔAEB​​和​ΔCFB​​中,​​​∴ΔAEB≅ΔCFB(AAS)​​,​∴AF=CE​​.【解析】根据菱形的性质得出​AB=CB​​,根据垂直得出​∠CFB=∠AEB=90°​​,根据全等三角形的判定得出​ΔAEB≅ΔCFB​​,根据全等三角形的性质得出即可.本题考查了菱形的性质,全等三角形的性质和判定等知识点,能灵活运用知识点进行推理是解此题的关键.22.【答案】【解答】(1)证明:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,∵AA′=BB′=CC′=DD′,∴A′B=B′C=C′D=D′A,在△AA′D′和△BB′A′中,,∴△AA′D′≌△BB′A′(SAS),∴A′D′=A′B′,∠AA′D′=∠BB′A′,∵∠BB′A′+∠BA′B′=90°,∴∠AA′D′+∠BA′B′=90°,∴∠B′A′D′=90°,同理:∠A′B′C′=∠B′C′D′=90°,∴四边形A′B′C′D′是矩形,∴四边形A′B′C′D′是正方形;(2)点A′、B′、C′、D′分别在AB、BC、CD、DA的中点时,正方形A′B′C′D′的面积是正方形ABCD面积的;∵正方形ABCD∽正方形A′B′C′D′,∴正方形A′B′C′D′:正方形ABCD的面积=()2=,∴=,设A′B′=a,AB=3a,A′B=x,则BB′=3a-x,在Rt△A′BB′中,x2+(3a-x)2=(a)2,解得:x=a(舍去),或x=,∴A′B=,∴点A′、B′、C′、D′分别在AB、BC、CD、DA的中点时,正方形A′B′C′D′的面积是正方形ABCD面积的.【解析】【分析】(1)先证明△AA′D′≌△BB′A′,得出A′D′=A′B′,∠AA′D′=∠BB′A′,再由角的互余关系得出∠B′A′D′=90°,证出四边形A′B′C′D′是矩形,即可证出结论;(2)由正方形ABCD∽正方形A′B′C′D′得出:=,设A′B′=a,AB=3a,根据勾股定理求出A′B=,即可得出结论.23.【答案】解:原式​=[x(x+1)​=​x​=x由于当​x=-1​​,​x=0​​或​x=1​​时,分式的分母为0,故取​x​​的值时,不可取​x=-1​​,​x=0​​或​x=1​​,不妨取​x=2​​,此时原式​=2【解析】先将括号内的分式通分,再按照分式的除法法则,将除法转化为乘法进行计算.本题考查了分式的化简求值,解答此题不仅要熟悉分式的除法法则,还要熟悉因式分解等内容.24.【答案】【解答】解:(1)原式=4--9+1=-,原式=x2+2x+1-(x2-4)=2x+5;(2)原式=(m2-1)2=(m+1)2(m-1)2;(3)方程两边都乘以(x+1)(x-1),得x(x+1)-(2x-1)=(x+1)(x-1).解得x=2,经检验:x=2是原分式方程的解.【解析】【分析】(1)根据负整数指数幂、零指数幂,可得实数的运算;根据因式分解,可得整式的加减,根据整式的加减,可得答案;(2)根据完全平方公式,可得平方差公式,根据平方差公式,可得答案;(3)根据等式的性质,可得整式方程,根据解整式方程,可得答案.25.【答案】【解答】解:由分式的值为0,得,解得x=-2.故当x=-2时,分式的值为0.【解析】【分析】根据分式值为零的条件:分子为0,分母不为0,可得答案.26.【答案】解:(1)​∵∠AB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论