湖北省咸宁市名校2024届八上数学期末复习检测模拟试题含解析_第1页
湖北省咸宁市名校2024届八上数学期末复习检测模拟试题含解析_第2页
湖北省咸宁市名校2024届八上数学期末复习检测模拟试题含解析_第3页
湖北省咸宁市名校2024届八上数学期末复习检测模拟试题含解析_第4页
湖北省咸宁市名校2024届八上数学期末复习检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省咸宁市名校2024届八上数学期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是A.射线OE是∠AOB的平分线B.△COD是等腰三角形C.C、D两点关于OE所在直线对称D.O、E两点关于CD所在直线对称2.若(x-3)(x+5)是x2+px+q的因式,则q为()A.-15 B.-2 C.8 D.23.在,0,,﹣,0.1010010001…(相邻两个1之间的0的个数逐渐增加1)这六个数中,无理数的个数共有()A.2个 B.3个 C.4个 D.5个4.某化肥厂计划每天生产化肥x吨,由于采用了新技术,每天多生产化肥3吨,因此实际生产150吨化肥与原计划生产化肥120吨化肥的时间相等,则下列所列方程正确的是()A. B.C. D.5.如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则=()A. B.2 C. D.6.在平面直角坐标系中,点A(m,-2)与点B(-3,n)关于y轴对称,则点(m,n)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.下列条件中,不能判断四边形ABCD是平行四边形的是(

)A.∠A=∠C,∠B=∠D B.AB∥CD,AB=CD C.AB=CD,AD∥BC D.AB∥CD,AD∥BC8.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90° B.60° C.45° D.30°9.已知方程组,则的值是()A.﹣2 B.2 C.﹣4 D.410.下列图标中,既是轴对称图形,又是中心对称图形的是()A. B.C. D.11.一元二次方程,经过配方可变形为()A. B. C. D.12.如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A.3 B.4C.5 D.6二、填空题(每题4分,共24分)13.若关于的方程的解不小于,则的取值范围是___________________.14.某校规定:学生的单科学期综合成绩是由平时、期中和期末三项成绩按3∶3∶4的比例计算所得.已知某学生本学期数学的平时、期中和期末成绩分别是90分、90分和95分,那么他本学期数学学期综合成绩是__________分15.点,是直线上的两点,则_______0(填“>”或“<”).16.已知点P(a,b)在一次函数y=4x+3的图象上,则代数式4a﹣b﹣2的值等于.17.已知一次函数的图像经过点(m,1),则m=____________.18.若关于x的分式方程=1的解是非负数,则m的取值范围是_____.三、解答题(共78分)19.(8分)如图1,一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在一起.现正方形ABCD保持不动,将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋转.(1)如图2,当EF与AB相交于点M,GF与BD相交于点N时,通过观察或测量BM,FN的长度,猜想BM,FN满足的数量关系,并证明你的猜想.(2)若三角尺GEF旋转到如图3所示的位置时,线段FE的延长线与AB的延长线相交于点M,线段BD的延长线与GF的延长线相交于点N,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.20.(8分)先化简,再求值:,从,1,2,3中选择一个合适的数代入并求值.21.(8分)如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC=2时,求证:△ABD≌△DCE;(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BDA等于多少度时,△ADE是等腰三角形.22.(10分)如图,在中,是原点,是的角平分线.确定所在直线的函数表达式;在线段上是否有一点,使点到轴和轴的距离相等,若存在,求出点的坐标;若不存在,请说明理由;在线段上是否有一点,使点到点和点的距离相等,若存在,直接写出点的坐标;若不存在,请说明理由.23.(10分)如图,△ABC中,∠ACB=90°,D为AB上一点,过D点作AB垂线,交AC于E,交BC的延长线于F.(1)∠1与∠B有什么关系?说明理由.(2)若BC=BD,请你探索AB与FB的数量关系,并且说明理由.24.(10分)计算我区在一项工程招标时,接到甲、乙两个工程队的投标书,从投标书中得知:每施工一天,甲工程队要万元,乙工程队要万元,工程小组根据甲、乙两队标书的测算,有三种方案:甲队单独完成这个工程,刚好如期完成;乙队单独完成这个工程要比规定时间多用5天;**********,剩下的工程由乙队单独做,也正好如期完成.方案中“星号”部分被损毁了.已知,一个同学设规定的工期为天,根据题意列出方程:(1)请将方案中“星号”部分补充出来________________;(2)你认为哪个方案节省工程款,请说明你的理由.25.(12分)在边长为1的小正方形网格中,△AOB的顶点均在格点上.(1)B点关于y轴的对称点坐标为;(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为.26.如图,在△ABC中,AB=AC=18cm,BC=10cm,AD=2BD.(1)如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过2s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?

参考答案一、选择题(每题4分,共48分)1、D【解析】试题分析:A、连接CE、DE,根据作图得到OC=OD,CE=DE.∵在△EOC与△EOD中,OC=OD,CE=DE,OE=OE,∴△EOC≌△EOD(SSS).∴∠AOE=∠BOE,即射线OE是∠AOB的平分线,正确,不符合题意.B、根据作图得到OC=OD,∴△COD是等腰三角形,正确,不符合题意.C、根据作图得到OC=OD,又∵射线OE平分∠AOB,∴OE是CD的垂直平分线.∴C、D两点关于OE所在直线对称,正确,不符合题意.D、根据作图不能得出CD平分OE,∴CD不是OE的平分线,∴O、E两点关于CD所在直线不对称,错误,符合题意.故选D.2、A【分析】直接利用多项式乘法或十字相乘法得出q的值.【详解】解:∵(x−3)(x+5)是x2+px+q的因式,∴q=−3×5=−1.故选A.【点睛】此题主要考查了十字相乘法分解因式,正确得出q与因式之间关系是解题关键.3、A【解析】根据无理数的定义对每个数进行判断即可.【详解】在,1,,﹣,1.1111111111…(相邻两个1之间的1的个数逐渐增加1)这六个数中,无理数有:,1.1111111111…(相邻两个1之间的1的个数逐渐增加1)共2个.故选:A.【点睛】本题考查了无理数的定义,掌握无理数的定义以及判定方法是解题的关键.4、C【分析】表示出原计划和实际的生产时间,根据时间相等,可列出方程.【详解】解:设计划每天生产化肥x吨,列方程得=.故选:C.【点睛】本题考查分式方程的应用,关键是掌握工程问题的数量关系:工作量=工作时间×工作效率,表示出工作时间.5、A【解析】∵△ABC是等边三角形,∴∠B=∠BCA=60°,AC=BC=AB,又∵AD=BE,∴AB-AD=BC-BE,即BD=CE,∴△ACE≌△CBD,∴∠CAE=∠BCD,又∵∠AFG=∠ACF+∠CAE,∴∠AFG=∠ACF+∠CAE=∠ACF+∠BCD=∠BCA=60°,∵AG⊥CD于点G,∴∠AGF=90°,∴∠FAG=30°,∴FG=AF,∴.故选A.6、D【分析】根据点A(m,-2)与点B(-3,n)关于y轴对称求出m、n的值,即可得到点(m,n)的坐标,从而判断其所在的象限.【详解】∵点A(m,-2)与点B(-3,m)关于y轴对称∴解得∴点(3,-2)在第四象限故答案为:D.【点睛】本题考查了关于y轴对称的点的问题,掌握关于y轴对称的点的性质、象限的定义以及性质是解题的关键.7、C【解析】本题考查了平行四边形的判定平行四边形的判定方法有:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.A、可以得到两组对边分别平行,根据:两组对边分别平行的四边形是平行四边形,判定四边形ABCD是平行四边形,故此选项不符合题意;B、可以根据:一组对边平行且相等的四边形是平行四边形,判定四边形ABCD是平行四边形,故此选项不符合题意;C、不能判定四边形ABCD是平行四边形,故此选项符合题意;D、根据:两组对边分别平行的四边形是平行四边形,判定四边形ABCD是平行四边形,故此选项不符合题意.故选C.8、C【解析】试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.试题解析:连接AC,如图:根据勾股定理可以得到:AC=BC=,AB=.∵()1+()1=()1.∴AC1+BC1=AB1.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选C.考点:勾股定理.9、C【分析】两式相减,得,所以,即.【详解】解:两式相减,得,∴,即,故选C.【点睛】本题考查了二元一次方程组,对原方程组进行变形是解题的关键10、D【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选:D.【点睛】本题考查了轴对称图形与中心对称的概念,熟悉基本概念及判断方法是解题的关键.11、A【解析】x2-4x+4-4-6=(x-2)2-10=0,即(x-2)2=10;故选A.12、D【解析】试题分析:先根据矩形的特点求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8﹣3=5,在Rt△CEF中,CF===4,设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,故选D.考点:翻折变换(折叠问题);勾股定理.二、填空题(每题4分,共24分)13、m≤-8【分析】先根据题意求到的解,会是一个关于的代数式,再根据不小于列出不等式,即可求得正确的答案.【详解】解:解得故答案为:.【点睛】本题考查的是方程的相关知识,根据题意列出含有m的不等式是解题的关键.14、1【分析】根据加权平均数的定义即可求解.【详解】依题意得本学期数学学期综合成绩是90×+90×+95×=1故答案为:1.【点睛】此题主要考查加权平均数,解题的关键是熟知加权平均数的求解方法.15、>.【分析】根据k<0,一次函数的函数值y随x的增大而减小解答.【详解】解:∵直线的k<0,∴函数值y随x的增大而减小.∵点,是直线上的两点,-1<3,∴y1>y2,即故答案为:>.【点睛】本题考查一次函数图象上点的坐标特征。利用数形结合思想解题是关键.16、﹣5【分析】试题分析:∵点P(a,b)在一次函数y=4x+3的图象上,∴b=4a+3∴4a﹣b﹣2=4a﹣(4a+3)﹣2=﹣5,即代数式4a﹣b﹣2的值等于﹣5【详解】请在此输入详解!17、-1【分析】把(m,1)代入中,得到关于m的方程,解方程即可.【详解】解:把(m,1)代入中,得

,解得m=-1.

故答案为:-1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题方法一般是代入这个点求解.18、m≥﹣4且m≠﹣1【解析】分式方程去分母转化为整式方程,由分式的解是非负数确定出m的范围即可.【详解】去分母得:m+1=x﹣1,解得:x=m+4,由分式方程的解为非负数,得到m+4≥0,且m+4≠1,解得:m≥﹣4且m≠﹣1.故答案为:m≥﹣4且m≠﹣1【点睛】本题考查分式方程的解,解一元一次不等式,解决此题时一定要注意解分式方程时分式的分母不能为0.三、解答题(共78分)19、(1)BM=FN,证明见解析(2)BM=FN仍然成立,证明见解析.【解析】试题分析:(1)根据正方形和等腰直角三角形的性质可证明△OBM≌△OFN,所以根据全等的性质可知BM=FN;(2)同(1)中的证明方法一样,根据正方形和等腰直角三角形的性质得OB=OF,∠MBO=∠NFO=135°,∠MOB=∠NOF,可证△OBM≌△OFN,所以BM=FN.试题解析:(1)BM=FN.证明:∵△GEF是等腰直角三角形,四边形ABCD是正方形,∴∠ABD=∠F=45°,OB=OF.又∵∠BOM=∠FON,∴△OBM≌△OFN.∴BM=FN.(2)BM=FN仍然成立.证明:∵△GEF是等腰直角三角形,四边形ABCD是正方形,∴∠DBA=∠GFE=45°,OB=OF.∴∠MBO=∠NFO=135°.又∵∠MOB=∠NOF,∴△OBM≌△OFN.∴BM=FN.点睛:本题考查旋转知识在几何综合题中运用,旋转前后许多线段相等,本题以实验为背景,探索在不同位置关系下线段的关系,为中考常见的题型.20、,1.【分析】根据分式的运算法则和乘法公式将原式化简,根据分式存在有意义的条件选取合适的数代入代数式计算即可.【详解】原式.∵x2﹣1≠0,x﹣2≠0,∴取x=3,原式==1.【点睛】本题考查的是分式的运算和分式存在有意义的条件,根据分式有意义的条件挑选出合适的值代入是解题的关键.21、(1)25°;小;(2)见解析;(3)当∠BDA=110°或80°时,△ADE是等腰三角形.【分析】(1)根据三角形内角和定理,将已知数值代入即可求出∠BAD,根据点D的运动方向可判定∠BDA的变化情况;(2)假设△ABD≌△DCE,利用全等三角形的对应边相等得出AB=DC=2,即可求得答案;

(3)假设△ADE是等腰三角形,分为三种情况:①当AD=AE时,∠ADE=∠AED=40°,根据∠AED>∠C,得出此时不符合;②当DA=DE时,求出∠DAE=∠DEA=70°,求出∠BAC,根据三角形的内角和定理求出∠BAD,根据三角形的内角和定理求出∠BDA即可;③当EA=ED时,求出∠DAC,求出∠BAD,根据三角形的内角和定理求出∠ADB.【详解】(1)∠BAD=180°-∠ABD-∠BDA=180°-40°-115°=25°;从图中可以得知,点D从B向C运动时,∠BDA逐渐变小;故答案为:25°;小.(2)∵∠EDC+∠ADE=∠DAB+∠B,∠B=∠EDA=40°∴∠EDC=∠DAB∵AB=AC∴∠B=∠C在△ABD和△DCE中,∴△ABD≌△DCE(ASA)(3)∵AB=AC,∴∠B=∠C=40°,①当AD=AE时,∠ADE=∠AED=40°,∵∠AED>∠C,∴此时不符合;②当DA=DE时,即∠DAE=∠DEA=×(180°-40°)=70°,∵∠BAC=180°-40°-40°=100°,∴∠BAD=100°-70°=30°;∴∠BDA=180°-30°-40°=110°;③当EA=ED时,∠ADE=∠DAE=40°,∴∠BAD=100°-40°=60°,∴∠BDA=180°-60°-40°=80°;∴当∠BDA=110°或80°时,△ADE是等腰三角形.【点睛】本题主要考查学生对等腰三角形的判定与性质,全等三角形的判定与性质,三角形外角的性质等知识点的理解和掌握,此题涉及到的知识点较多,综合性较强,但难度不大,属于基础题.22、(1);(2)存在,;(3)存在,,【分析】(1)设的表达式为:,将A、B的坐标代入即可求出直线AB的解析式;(2)过点作,交于,根据角平分线的性质可得,然后根据勾股定理求出AB,利用即可求出点C的坐标,利用待定系数法求出AC的解析式,设,代入解析式中即可求出点P的坐标;(3)根据AC的解析式设点Q的坐标为(b,),然后利用平面直角坐标系中任意两点之间的距离公式求出QA和QB,然后利用QA=QB列方程即可求出点Q的坐标.【详解】由题意得,设的表达式为:将代入得,解得:存在过点作交于是角平分线在Rt△AOB中,由题意得即有解得∴点C的坐标为:设直线AC的表达式为将代入,得解得:的表达式为设,代入得,存在点Q在AC上,设点Q的坐标为(b,)∴QA=,QB=∵QA=QB∴解得:b=∴【点睛】此题考查的是一次函数与图形的综合问题,掌握利用待定系数法求一次函数的解析式、勾股定理、角平分线的性质和平面直角坐标系中任意两点之间的距离公式是解决此题的关键.23、(1)∠1与∠B相等,理由见解析;(2)若BC=BD,AB与FB相等,理由见解析【分析】(1)∠ACB=90°,∠1+∠F=90°,又由于DF⊥AB,∠B+∠F=90°,继而可得出∠1=∠B;

(2)通过判定△ABC≌△FBD(AAS),可得出AB=FB.【详解】解:(1)∠1与∠B相等,理由:∵,△ABC中,∠ACB=90°,∴∠1+∠F=90°,∵FD⊥AB,∴∠B+∠F=90°,∴∠1=∠B;(2)若BC=BD,AB与FB相等,理由:∵△ABC中,∠ACB=90°,DF⊥AB,∴∠ACB=∠FDB=90°,在△ACB和△FDB中,,∴△ACB≌△FDB(AAS),∴AB=FB.【点睛】本题考查全等三角形的判定(AAS)与性质、三角形内角和,解题的关键是掌握全等三角形的判定(AAS)与性质、三角形内角和.24、(1)甲、乙两队合作4天;(2)方案可以节省工程款.【分析】(1)方程中代表甲乙合作4天所做工程量,据此可得结果;(2)根据题意先求得规定的天数,然后再计算三种方案的价钱后进行对比.【详解】解:(1)方程中代表甲乙合作4天所做工程量,所以“星号”部分应为“甲、乙两队合作4天”;(2)设规定的工期为天,根据题意列出方程:,解得:.经检验:是原分式方程的解.这三种施工方案需要的工程款为:(A)(万元);(B)(万元);(C)(万元).综上所述,方案可以节省工程款.【点睛】本题考查分式方程的应用,根据题意列出分式方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论