版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市市西中2024届高三数学试题下学期3月教学质量监测考试试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.将函数的图像向左平移个单位得到函数的图像,则的最小值为()A. B. C. D.2.若某几何体的三视图如图所示,则该几何体的表面积为()A.240 B.264 C.274 D.2823.一个盒子里有4个分别标有号码为1,2,3,4的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是4的取法有()A.17种 B.27种 C.37种 D.47种4.在一个数列中,如果,都有(为常数),那么这个数列叫做等积数列,叫做这个数列的公积.已知数列是等积数列,且,,公积为,则()A. B. C. D.5.已知等差数列的前n项和为,,则A.3 B.4 C.5 D.66.圆柱被一平面截去一部分所得几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.7.已知函数,,若,对任意恒有,在区间上有且只有一个使,则的最大值为()A. B. C. D.8.已知全集,集合,,则()A. B. C. D.9.射线测厚技术原理公式为,其中分别为射线穿过被测物前后的强度,是自然对数的底数,为被测物厚度,为被测物的密度,是被测物对射线的吸收系数.工业上通常用镅241()低能射线测量钢板的厚度.若这种射线对钢板的半价层厚度为0.8,钢的密度为7.6,则这种射线的吸收系数为()(注:半价层厚度是指将已知射线强度减弱为一半的某种物质厚度,,结果精确到0.001)A.0.110 B.0.112 C. D.10.若集合,,则()A. B. C. D.11.将一块边长为的正方形薄铁皮按如图(1)所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,将该容器按如图(2)放置,若其正视图为等腰直角三角形,且该容器的容积为,则的值为()A.6 B.8 C.10 D.1212.已知定义在上的偶函数满足,且在区间上是减函数,令,则的大小关系为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知复数,其中为虚数单位,若复数为纯虚数,则实数的值是__.14.在平面直角坐标系中,点的坐标为,点是直线:上位于第一象限内的一点.已知以为直径的圆被直线所截得的弦长为,则点的坐标__________.15.三对父子去参加亲子活动,坐在如图所示的6个位置上,有且仅有一对父子是相邻而坐的坐法有________种(比如:B与D、B与C是相邻的,A与D、C与D是不相邻的).16.已知数列的首项,函数在上有唯一零点,则数列|的前项和__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知在多面体中,平面平面,且四边形为正方形,且//,,,点,分别是,的中点.(1)求证:平面;(2)求平面与平面所成的锐二面角的余弦值.18.(12分)已知等差数列满足,.(l)求等差数列的通项公式;(2)设,求数列的前项和.19.(12分)的内角的对边分别为,已知.(1)求的大小;(2)若,求面积的最大值.20.(12分)如图,在直棱柱中,底面为菱形,,,与相交于点,与相交于点.(1)求证:平面;(2)求直线与平面所成的角的正弦值.21.(12分)在直角坐标系中,曲线的参数方程为(为参数,为实数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线与曲线交于,两点,线段的中点为.(1)求线段长的最小值;(2)求点的轨迹方程.22.(10分)已知椭圆过点,设椭圆的上顶点为,右顶点和右焦点分别为,,且.(1)求椭圆的标准方程;(2)设直线交椭圆于,两点,设直线与直线的斜率分别为,,若,试判断直线是否过定点?若过定点,求出该定点的坐标;若不过定点,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
根据三角函数的平移求出函数的解析式,结合三角函数的性质进行求解即可.【题目详解】将函数的图象向左平移个单位,得到,此时与函数的图象重合,则,即,,当时,取得最小值为,故选:.【题目点拨】本题主要考查三角函数的图象和性质,利用三角函数的平移关系求出解析式是解决本题的关键.2、B【解题分析】
将三视图还原成几何体,然后分别求出各个面的面积,得到答案.【题目详解】由三视图可得,该几何体的直观图如图所示,延长交于点,其中,,,所以表面积.故选B项.【题目点拨】本题考查三视图还原几何体,求组合体的表面积,属于中档题3、C【解题分析】
由于是放回抽取,故每次的情况有4种,共有64种;先找到最大值不是4的情况,即三次取出标号均不为4的球的情况,进而求解.【题目详解】所有可能的情况有种,其中最大值不是4的情况有种,所以取得小球标号最大值是4的取法有种,故选:C【题目点拨】本题考查古典概型,考查补集思想的应用,属于基础题.4、B【解题分析】
计算出的值,推导出,再由,结合数列的周期性可求得数列的前项和.【题目详解】由题意可知,则对任意的,,则,,由,得,,,,因此,.故选:B.【题目点拨】本题考查数列求和,考查了数列的新定义,推导出数列的周期性是解答的关键,考查推理能力与计算能力,属于中等题.5、C【解题分析】
方法一:设等差数列的公差为,则,解得,所以.故选C.方法二:因为,所以,则.故选C.6、B【解题分析】
三视图对应的几何体为如图所示的几何体,利用割补法可求其体积.【题目详解】根据三视图可得原几何体如图所示,它是一个圆柱截去上面一块几何体,把该几何体补成如下图所示的圆柱,其体积为,故原几何体的体积为.故选:B.【题目点拨】本题考查三视图以及不规则几何体的体积,复原几何体时注意三视图中的点线关系与几何体中的点、线、面的对应关系,另外,不规则几何体的体积可用割补法来求其体积,本题属于基础题.7、C【解题分析】
根据的零点和最值点列方程组,求得的表达式(用表示),根据在上有且只有一个最大值,求得的取值范围,求得对应的取值范围,由为整数对的取值进行验证,由此求得的最大值.【题目详解】由题意知,则其中,.又在上有且只有一个最大值,所以,得,即,所以,又,因此.①当时,,此时取可使成立,当时,,所以当或时,都成立,舍去;②当时,,此时取可使成立,当时,,所以当或时,都成立,舍去;③当时,,此时取可使成立,当时,,所以当时,成立;综上所得的最大值为.故选:C【题目点拨】本小题主要考查三角函数的零点和最值,考查三角函数的性质,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题.8、B【解题分析】
直接利用集合的基本运算求解即可.【题目详解】解:全集,集合,,则,故选:.【题目点拨】本题考查集合的基本运算,属于基础题.9、C【解题分析】
根据题意知,,代入公式,求出即可.【题目详解】由题意可得,因为,所以,即.所以这种射线的吸收系数为.故选:C【题目点拨】本题主要考查知识的迁移能力,把数学知识与物理知识相融合;重点考查指数型函数,利用指数的相关性质来研究指数型函数的性质,以及解指数型方程;属于中档题.10、B【解题分析】
根据正弦函数的性质可得集合A,由集合性质表示形式即可求得,进而可知满足.【题目详解】依题意,;而,故,则.故选:B.【题目点拨】本题考查了集合关系的判断与应用,集合的包含关系与补集关系的应用,属于中档题.11、D【解题分析】
推导出,且,,,设中点为,则平面,由此能表示出该容器的体积,从而求出参数的值.【题目详解】解:如图(4),为该四棱锥的正视图,由图(3)可知,,且,由为等腰直角三角形可知,,设中点为,则平面,∴,∴,解得.故选:D【题目点拨】本题考查三视图和锥体的体积计算公式的应用,属于中档题.12、C【解题分析】
可设,根据在上为偶函数及便可得到:,可设,,且,根据在上是减函数便可得出,从而得出在上单调递增,再根据对数的运算得到、、的大小关系,从而得到的大小关系.【题目详解】解:因为,即,又,设,根据条件,,;若,,且,则:;在上是减函数;;;在上是增函数;所以,故选:C【题目点拨】考查偶函数的定义,减函数及增函数的定义,根据单调性定义判断一个函数单调性的方法和过程:设,通过条件比较与,函数的单调性的应用,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、2【解题分析】
由题,得,然后根据纯虚数的定义,即可得到本题答案.【题目详解】由题,得,又复数为纯虚数,所以,解得.故答案为:2【题目点拨】本题主要考查纯虚数定义的应用,属基础题.14、【解题分析】
依题意画图,设,根据圆的直径所对的圆周角为直角,可得,通过勾股定理得,再利用两点间的距离公式即可求出,进而得出点坐标.【题目详解】解:依题意画图,设以为直径的圆被直线所截得的弦长为,且,又因为为圆的直径,则所对的圆周角,则,则为点到直线:的距离.所以,则.又因为点在直线:上,设,则.解得,则.故答案为:【题目点拨】本题考查了直线与圆的位置关系,考查了两点间的距离公式,点到直线的距离公式,是基础题.15、192【解题分析】
根据题意,分步进行分析:①,在三对父子中任选1对,安排在相邻的位置上,②,将剩下的4人安排在剩下的4个位置,要求父子不能坐在相邻的位置,由分步计数原理计算可得答案.【题目详解】根据题意,分步进行分析:①,在三对父子中任选1对,有3种选法,由图可得相邻的位置有4种情况,将选出的1对父子安排在相邻的位置,有种安排方法;②,将剩下的4人安排在剩下的4个位置,要求父子不能坐在相邻的位置,有种安排方法,则有且仅有一对父子是相邻而坐的坐法种;故答案为:【题目点拨】本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.16、【解题分析】
由函数为偶函数,可得唯一零点为,代入可得数列的递推关系式,再进行配凑转换为等比数列,最后运用分部求和可得答案.【题目详解】因为为偶函数,在上有唯一零点,所以,∴,∴,∴为首项为2,公比为2的等比数列.所以,.故答案为:【题目点拨】本题主要考查了函数的奇偶性和函数的零点,同时也考查了由递推关系式求数列的通项,考查了数列的分部求和,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解题分析】
(1)构造直线所在平面,由面面平行推证线面平行;(2)以为坐标原点,建立空间直角坐标系,分别求出两个平面的法向量,再由法向量之间的夹角,求得二面角的余弦值.【题目详解】(1)过点交于点,连接,如下图所示:因为平面平面,且交线为,又四边形为正方形,故可得,故可得平面,又平面,故可得.在三角形中,因为为中点,,故可得//,为中点;又因为四边形为等腰梯形,是的中点,故可得//;又,且平面,平面,故面面,又因为平面,故面.即证.(2)连接,,作交于点,由(1)可知平面,又因为//,故可得平面,则;又因为//,,故可得即,,两两垂直,则分别以,,为,,轴建立空间直角坐标系,则,,,,,,设面的法向量为,则,,则,可取,设平面的法向量为,则,,则,可取,可知平面与平面所成的锐二面角的余弦值为.【题目点拨】本题考查由面面平行推证线面平行,涉及用向量法求二面角的大小,属综合基础题.18、(1);(2).【解题分析】试题分析:(1)设等差数列满的首项为,公差为,代入两等式可解。(2)由(1),代入得,所以通过裂项求和可求得。试题解析:(1)设等差数列的公差为,则由题意可得,解得.所以.(2)因为,所以.所以.19、(1);(2).【解题分析】
(1)利用正弦定理将边化角,结合诱导公式可化简边角关系式,求得,根据可求得结果;(2)利用余弦定理可得,利用基本不等式可求得,代入三角形面积公式可求得结果.【题目详解】(1)由正弦定理得:,又,即由得:(2)由余弦定理得:又(当且仅当时取等号)即三角形面积的最大值为:【题目点拨】本题考查解三角形的相关知识,涉及到正弦定理化简边角关系式、余弦定理解三角形、三角形面积公式应用、基本不等式求积的最大值、诱导公式的应用等知识,属于常考题型.20、(1)证明见解析(2)【解题分析】
(1)要证明平面,只需证明,即可:(2)取中点,连,以为原点,分别为轴建立空间直角坐标系,分别求出与平面的法向量,再利用计算即可.【题目详解】(1)∵底面为菱形,∵直棱柱平面.∵平面..平面;(2)如图,取中点,连,以为原点,分别为轴建立如图所示空间直角坐标系:,点,设平面的法向量为,,有,令,得又,设直线与平面所成的角为,所以故直线与平面所成的角的正弦值为.【题目点拨】本题考查线面垂直的证明以及向量法求线面角的正弦值,考查学生的运算求解能力,本题解题关键是正确写出点的坐标.21、(1)(2)【解题分析】
(1)将曲线的方程化成直角坐标方程为,当时,线段取得最小值,利用几何法求弦长即可.(2)当点与点不重合时,设,由利用向量的数量积等于可求解,最后验证当点与点重合时也满足.【题目详解】解曲线的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度户外场地租用协议模板
- 文献检索考试题目之一
- 2024年物流配送服务协议汇编
- 2024年项目融资协议范本
- 2024届安徽池州市东至二中高中毕业班阶段性测试(二)数学试题
- 2024年度房地产经纪服务协议模板
- 2024专业储藏室转让协议格式
- 2024专业房产买卖协议法律认证文件
- 2024年会计人员劳务协议样本
- 城市便捷汽车租赁协议模板2024
- 基于数据挖掘的高职学情分析与课堂教学质量提升研究
- 能源岗位招聘笔试题与参考答案(某大型国企)2024年
- 蔡戈尼效应完整版本
- 农业灌溉装置市场环境与对策分析
- 统编版道德与法治初二上学期期中试卷及答案指导(2024年)
- 部编版小学五年级上册道法课程纲要(知识清单)
- 职业技能等级认定质量控制及规章制度
- 山东省临沂市(2024年-2025年小学四年级语文)人教版期中考试(上学期)试卷及答案
- 英大传媒投资集团限公司2024年应届毕业生招聘(第一批)高频500题难、易错点模拟试题附带答案详解
- 2024人教版道法七年级上册第二单元:成长的时空大单元整体教学设计
- 肺胀(慢性阻塞性肺病)中医优势病种诊疗方案
评论
0/150
提交评论