版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖北省创新发展联盟高三入学考试数学试题试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知F是双曲线(k为常数)的一个焦点,则点F到双曲线C的一条渐近线的距离为()A.2k B.4k C.4 D.22.在中,为边上的中线,为的中点,且,,则()A. B. C. D.3.已知双曲线的两条渐近线与抛物线的准线分别交于点、,O为坐标原点.若双曲线的离心率为2,三角形AOB的面积为,则p=().A.1 B. C.2 D.34.已知函数,,且在上是单调函数,则下列说法正确的是()A. B.C.函数在上单调递减 D.函数的图像关于点对称5.给出以下四个命题:①依次首尾相接的四条线段必共面;②过不在同一条直线上的三点,有且只有一个平面;③空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角必相等;④垂直于同一直线的两条直线必平行.其中正确命题的个数是()A.0 B.1 C.2 D.36.中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数除以正整数后的余数为,则记为,例如.现将该问题以程序框图的算法给出,执行该程序框图,则输出的等于().A. B. C. D.7.若复数是纯虚数,则()A.3 B.5 C. D.8.已知命题,且是的必要不充分条件,则实数的取值范围为()A. B. C. D.9.函数的图象大致为()A. B.C. D.10.一个袋中放有大小、形状均相同的小球,其中红球1个、黑球2个,现随机等可能取出小球,当有放回依次取出两个小球时,记取出的红球数为;当无放回依次取出两个小球时,记取出的红球数为,则()A., B.,C., D.,11.已知双曲线的一个焦点与抛物线的焦点重合,则双曲线的离心率为()A. B. C.3 D.412.“中国剩余定理”又称“孙子定理”,最早可见于中国南北朝时期的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”,原文如下:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?现有这样一个相关的问题:将1到2020这2020个自然数中被5除余3且被7除余2的数按照从小到大的顺序排成一列,构成一个数列,则该数列各项之和为()A.56383 B.57171 C.59189 D.61242二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆Г:,F1、F2是椭圆Г的左、右焦点,A为椭圆Г的上顶点,延长AF2交椭圆Г于点B,若为等腰三角形,则椭圆Г的离心率为___________.14.已知i为虚数单位,复数,则=_______.15.已知函数,若关于的方程在定义域上有四个不同的解,则实数的取值范围是_______.16.某校为了解学生学习的情况,采用分层抽样的方法从高一人、高二人、高三人中,抽取人进行问卷调查.已知高一被抽取的人数为,那么高三被抽取的人数为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱柱中,平面平面,侧面为平行四边形,侧面为正方形,,,为的中点.(1)求证:平面;(2)求二面角的大小.18.(12分)已知函数(1)解不等式;(2)若函数,若对于任意的,都存在,使得成立,求实数的取值范围.19.(12分)在直角坐标系中,直线的参数方程为(为参数),直线的参数方程为,(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(Ⅰ)求的极坐标方程和的直角坐标方程;(Ⅱ)设分别交于两点(与原点不重合),求的最小值.20.(12分)已知在中,角、、的对边分别为,,,,.(1)若,求的值;(2)若,求的面积.21.(12分)在直角坐标系中,长为3的线段的两端点分别在轴、轴上滑动,点为线段上的点,且满足.记点的轨迹为曲线.(1)求曲线的方程;(2)若点为曲线上的两个动点,记,判断是否存在常数使得点到直线的距离为定值?若存在,求出常数的值和这个定值;若不存在,请说明理由.22.(10分)已知函数f(x)=x-1+x+2,记f(x)(Ⅰ)解不等式f(x)≤5;(Ⅱ)若正实数a,b满足1a+1
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
分析可得,再去绝对值化简成标准形式,进而根据双曲线的性质求解即可.【题目详解】当时,等式不是双曲线的方程;当时,,可化为,可得虚半轴长,所以点F到双曲线C的一条渐近线的距离为2.故选:D【题目点拨】本题考查双曲线的方程与点到直线的距离.属于基础题.2、A【解题分析】
根据向量的线性运算可得,利用及,计算即可.【题目详解】因为,所以,所以,故选:A【题目点拨】本题主要考查了向量的线性运算,向量数量积的运算,向量数量积的性质,属于中档题.3、C【解题分析】试题分析:抛物线的准线为,双曲线的离心率为2,则,,渐近线方程为,求出交点,,,则;选C考点:1.双曲线的渐近线和离心率;2.抛物线的准线方程;4、B【解题分析】
根据函数,在上是单调函数,确定,然后一一验证,A.若,则,由,得,但.B.由,,确定,再求解验证.C.利用整体法根据正弦函数的单调性判断.D.计算是否为0.【题目详解】因为函数,在上是单调函数,所以,即,所以,若,则,又因为,即,解得,而,故A错误.由,不妨令,得由,得或当时,,不合题意.当时,,此时所以,故B正确.因为,函数,在上是单调递增,故C错误.,故D错误.故选:B【题目点拨】本题主要考查三角函数的性质及其应用,还考查了运算求解的能力,属于较难的题.5、B【解题分析】
用空间四边形对①进行判断;根据公理2对②进行判断;根据空间角的定义对③进行判断;根据空间直线位置关系对④进行判断.【题目详解】①中,空间四边形的四条线段不共面,故①错误.②中,由公理2知道,过不在同一条直线上的三点,有且只有一个平面,故②正确.③中,由空间角的定义知道,空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补,故③错误.④中,空间中,垂直于同一直线的两条直线可相交,可平行,可异面,故④错误.故选:B【题目点拨】本小题考查空间点,线,面的位置关系及其相关公理,定理及其推论的理解和认识;考查空间想象能力,推理论证能力,考查数形结合思想,化归与转化思想.6、C【解题分析】从21开始,输出的数是除以3余2,除以5余3,满足条件的是23,故选C.7、C【解题分析】
先由已知,求出,进一步可得,再利用复数模的运算即可【题目详解】由z是纯虚数,得且,所以,.因此,.故选:C.【题目点拨】本题考查复数的除法、复数模的运算,考查学生的运算能力,是一道基础题.8、D【解题分析】
求出命题不等式的解为,是的必要不充分条件,得是的子集,建立不等式求解.【题目详解】解:命题,即:,是的必要不充分条件,,,解得.实数的取值范围为.故选:.【题目点拨】本题考查根据充分、必要条件求参数范围,其思路方法:(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解.(2)求解参数的取值范围时,一定要注意区间端点值的检验.9、A【解题分析】
确定函数在定义域内的单调性,计算时的函数值可排除三个选项.【题目详解】时,函数为减函数,排除B,时,函数也是减函数,排除D,又时,,排除C,只有A可满足.故选:A.【题目点拨】本题考查由函数解析式选择函数图象,可通过解析式研究函数的性质,如奇偶性、单调性、对称性等等排除,可通过特殊的函数值,函数值的正负,函数值的变化趋势排除,最后剩下的一个即为正确选项.10、B【解题分析】
分别求出两个随机变量的分布列后求出它们的期望和方差可得它们的大小关系.【题目详解】可能的取值为;可能的取值为,,,,故,.,,故,,故,.故选B.【题目点拨】离散型随机变量的分布列的计算,应先确定随机变量所有可能的取值,再利用排列组合知识求出随机变量每一种取值情况的概率,然后利用公式计算期望和方差,注意在取球模型中摸出的球有放回与无放回的区别.11、A【解题分析】
根据题意,由抛物线的方程可得其焦点坐标,由此可得双曲线的焦点坐标,由双曲线的几何性质可得,解可得,由离心率公式计算可得答案.【题目详解】根据题意,抛物线的焦点为,则双曲线的焦点也为,即,则有,解可得,双曲线的离心率.故选:A.【题目点拨】本题主要考查双曲线、抛物线的标准方程,关键是求出抛物线焦点的坐标,意在考查学生对这些知识的理解掌握水平.12、C【解题分析】
根据“被5除余3且被7除余2的正整数”,可得这些数构成等差数列,然后根据等差数列的前项和公式,可得结果.【题目详解】被5除余3且被7除余2的正整数构成首项为23,公差为的等差数列,记数列则令,解得.故该数列各项之和为.故选:C.【题目点拨】本题考查等差数列的应用,属基础题。二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
由题意可得等腰三角形的两条相等的边,设,由题可得的长,在三角形中,三角形中由余弦定理可得的值相等,可得的关系,从而求出椭圆的离心率【题目详解】如图,若为等腰三角形,则|BF1|=|AB|.设|BF2|=t,则|BF1|=2a−t,所以|AB|=a+t=|BF1|=2a−t,解得a=2t,即|AB|=|BF1|=3t,|AF1|=2t,设∠BAO=θ,则∠BAF1=2θ,所以Г的离心率e=,结合余弦定理,易得在中,,所以,即e==,故答案为:.【题目点拨】此题考查椭圆的定义及余弦定理的简单应用,属于中档题.14、【解题分析】
先把复数进行化简,然后利用求模公式可得结果.【题目详解】.故答案为:.【题目点拨】本题主要考查复数模的求解,利用复数的运算把复数化为的形式是求解的关键,侧重考查数学运算的核心素养.15、【解题分析】
由题意可在定义域上有四个不同的解等价于关于原点对称的函数与函数的图象有两个交点,运用参变分离和构造函数,进而借助导数分析单调性与极值,画出函数图象,即可得到所求范围.【题目详解】已知定义在上的函数若在定义域上有四个不同的解等价于关于原点对称的函数与函数f(x)=lnx-x(x>0)的图象有两个交点,联立可得有两个解,即可设,则,进而且不恒为零,可得在单调递增.由可得时,单调递减;时,单调递增,即在处取得极小值且为作出的图象,可得时,有两个解.故答案为:【题目点拨】本题考查利用利用导数解决方程的根的问题,还考查了等价转化思想与函数对称性的应用,属于难题.16、【解题分析】由分层抽样的知识可得,即,所以高三被抽取的人数为,应填答案.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解题分析】
(1)连接,交与,连接,由,得出结论;(2)以为原点,,,分别为,,轴建立空间直角坐标系,求出平面的法向量,利用夹角公式求出即可.【题目详解】(1)连接,交与,连接,在中,,又平面,平面,所以平面;(2)由平面平面,,为平面与平面的交线,故平面,故,又,所以平面,以为原点,,,分别为,,轴建立空间直角坐标系,,,,,,,设平面的法向量为,,,由,得,平面的法向量为,由,故二面角的大小为.【题目点拨】本小题主要考查线面平行的证明,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.18、(1)(2)【解题分析】
(1)将表示为分段函数的形式,由此求得不等式的解集.(2)利用绝对值三角不等式,求得的取值范围,根据分段函数解析式,求得的取值范围,结合题意列不等式,解不等式求得的取值范围.【题目详解】(1),由得或或;解得.故所求解集为.(2),即.由(1)知,所以,即.∴,∴.【题目点拨】本小题考查了绝对值不等式,绝对值三角不等式和函数最值问题,考查运算求解能力,推理论证能力,化归与转化思想.19、(Ⅰ)直线的极坐标方程为,直线的极坐标方程为,的直角坐标方程为;(Ⅱ)2.【解题分析】
(Ⅰ)由定义可直接写出直线的极坐标方程,对曲线同乘可得:,转化成直角坐标为;(Ⅱ)分别联立两直线和曲线的方程,由得,由得,则,结合三角函数即可求解;【题目详解】(Ⅰ)直线的极坐标方程为,直线的极坐标方程为由曲线的极坐标方程得,所以的直角坐标方程为.(Ⅱ)与的极坐标方程联立得所以.与的极坐标方程联立得所以.所以.所以当时,取最小值2.【题目点拨】本题考查参数方程与极坐标方程的互化,极坐标方程与直角坐标方程的互化,极坐标中的几何意义,属于中档题20、(1)7(2)14【解题分析】
(1)在中,,可得,结合正弦定理,即可求得答案;(2)根据余弦定理和三角形面积公式,即可求得答案.【题目详解】(1)在中,,,,,,.(2),,,解得,.【题目点拨】本题主要考查了正弦定理和余弦定理解三角形,解题关键是掌握正弦定理边化角,考查了分析能力和计算能力,属于中档题.21、(1)(2)存在;常数,定值【解题分析】
(1)设出的坐标,利用以及,求得曲线的方程.(2)当直线的斜率存在时,设出直线的方程,求得到直线的距离.联立直线的方程和曲线的方程,写出根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 线上学习行为模式解析-洞察分析
- 通航制造业绿色认证-洞察分析
- 网络成瘾与儿童心理健康-洞察分析
- 遗址环境监测与评估体系构建-洞察分析
- 2025年浙教版七年级物理下册月考试卷含答案
- 水生植物碳汇功能研究-洞察分析
- 2025年人民版八年级科学下册月考试卷含答案
- 2025年沪科版一年级英语上册阶段测试试卷
- 2025年度新能源车辆产品试用合作合同4篇
- 2025年人教五四新版七年级科学下册阶段测试试卷含答案
- 领导沟通的艺术
- 发生用药错误应急预案
- 南浔至临安公路(南浔至练市段)公路工程环境影响报告
- 绿色贷款培训课件
- 大学生预征对象登记表(样表)
- 主管部门审核意见三篇
- 初中数学校本教材(完整版)
- 父母教育方式对幼儿社会性发展影响的研究
- 新课标人教版数学三年级上册第八单元《分数的初步认识》教材解读
- (人教版2019)数学必修第一册 第三章 函数的概念与性质 复习课件
- 重庆市铜梁区2024届数学八上期末检测试题含解析
评论
0/150
提交评论