版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年福建省福州市罗源第一中学高三上数学期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数在区间上恰有四个不同的零点,则实数的取值范围是()A. B. C. D.2.已知菱形的边长为2,,则()A.4 B.6 C. D.3.已知函数,其中,若恒成立,则函数的单调递增区间为()A. B.C. D.4.若,则下列不等式不能成立的是()A. B. C. D.5.某四棱锥的三视图如图所示,则该四棱锥的表面积为()A.8 B. C. D.6.已知圆关于双曲线的一条渐近线对称,则双曲线的离心率为()A. B. C. D.7.已知复数满足(其中为的共轭复数),则的值为()A.1 B.2 C. D.8.斜率为1的直线l与椭圆相交于A、B两点,则的最大值为A.2 B. C. D.9.如图是正方体截去一个四棱锥后的得到的几何体的三视图,则该几何体的体积是()A. B. C. D.10.已知函数,集合,,则()A. B.C. D.11.设函数,则使得成立的的取值范围是().A. B.C. D.12.已知双曲线的一条渐近线方程为,则双曲线的离心率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.曲线在处的切线的斜率为________.14.已知等差数列的前n项和为,,,则=_______.15.已知数列满足:点在直线上,若使、、构成等比数列,则______16.如图,在正四棱柱中,P是侧棱上一点,且.设三棱锥的体积为,正四棱柱的体积为V,则的值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研发投入.为了对新研发的产品进行合理定价,将该产品按事先拟定的价格试销,得到一组检测数据如表所示:试销价格(元)产品销量(件)已知变量且有线性负相关关系,现有甲、乙、丙三位同学通过计算求得回归直线方程分别为:甲;乙;丙,其中有且仅有一位同学的计算结果是正确的.(1)试判断谁的计算结果正确?(2)若由线性回归方程得到的估计数据与检测数据的误差不超过,则称该检测数据是“理想数据”,现从检测数据中随机抽取个,求“理想数据”的个数为的概率.18.(12分)团购已成为时下商家和顾客均非常青睐的一种省钱、高校的消费方式,不少商家同时加入多家团购网.现恰有三个团购网站在市开展了团购业务,市某调查公司为调查这三家团购网站在本市的开展情况,从本市已加入了团购网站的商家中随机地抽取了50家进行调查,他们加入这三家团购网站的情况如下图所示.(1)从所调查的50家商家中任选两家,求他们加入团购网站的数量不相等的概率;(2)从所调查的50家商家中任取两家,用表示这两家商家参加的团购网站数量之差的绝对值,求随机变量的分布列和数学期望;(3)将频率视为概率,现从市随机抽取3家已加入团购网站的商家,记其中恰好加入了两个团购网站的商家数为,试求事件“”的概率.19.(12分)在中,a,b,c分别是角A,B,C的对边,并且.(1)已知_______________,计算的面积;请①,②,③这三个条件中任选两个,将问题(1)补充完整,并作答.注意,只需选择其中的一种情况作答即可,如果选择多种情况作答,以第一种情况的解答计分.(2)求的最大值.20.(12分)已知函数的图象向左平移后与函数图象重合.(1)求和的值;(2)若函数,求的单调递增区间及图象的对称轴方程.21.(12分)已知函数,且.(1)求的解析式;(2)已知,若对任意的,总存在,使得成立,求的取值范围.22.(10分)如图,在直三棱柱中,,点分别为和的中点.(Ⅰ)棱上是否存在点使得平面平面?若存在,写出的长并证明你的结论;若不存在,请说明理由.(Ⅱ)求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
函数的零点就是方程的解,设,方程可化为,即或,求出的导数,利用导数得出函数的单调性和最值,由此可根据方程解的个数得出的范围.【详解】由题意得有四个大于的不等实根,记,则上述方程转化为,即,所以或.因为,当时,,单调递减;当时,,单调递增;所以在处取得最小值,最小值为.因为,所以有两个符合条件的实数解,故在区间上恰有四个不相等的零点,需且.故选:A.【点睛】本题考查复合函数的零点.考查转化与化归思想,函数零点转化为方程的解,方程的解再转化为研究函数的性质,本题考查了学生分析问题解决问题的能力.2、B【解析】
根据菱形中的边角关系,利用余弦定理和数量积公式,即可求出结果.【详解】如图所示,菱形形的边长为2,,∴,∴,∴,且,∴,故选B.【点睛】本题主要考查了平面向量的数量积和余弦定理的应用问题,属于基础题..3、A【解析】
,从而可得,,再解不等式即可.【详解】由已知,,所以,,由,解得,.故选:A.【点睛】本题考查求正弦型函数的单调区间,涉及到恒成立问题,考查学生转化与化归的思想,是一道中档题.4、B【解析】
根据不等式的性质对选项逐一判断即可.【详解】选项A:由于,即,,所以,所以,所以成立;选项B:由于,即,所以,所以,所以不成立;选项C:由于,所以,所以,所以成立;选项D:由于,所以,所以,所以,所以成立.故选:B.【点睛】本题考查不等关系和不等式,属于基础题.5、D【解析】
根据三视图还原几何体为四棱锥,即可求出几何体的表面积.【详解】由三视图知几何体是四棱锥,如图,且四棱锥的一条侧棱与底面垂直,四棱锥的底面是正方形,边长为2,棱锥的高为2,所以,故选:【点睛】本题主要考查了由三视图还原几何体,棱锥表面积的计算,考查了学生的运算能力,属于中档题.6、C【解析】
将圆,化为标准方程为,求得圆心为.根据圆关于双曲线的一条渐近线对称,则圆心在渐近线上,.再根据求解.【详解】已知圆,所以其标准方程为:,所以圆心为.因为双曲线,所以其渐近线方程为,又因为圆关于双曲线的一条渐近线对称,则圆心在渐近线上,所以.所以.故选:C【点睛】本题主要考查圆的方程及对称性,还有双曲线的几何性质,还考查了运算求解的能力,属于中档题.7、D【解析】
按照复数的运算法则先求出,再写出,进而求出.【详解】,,.故选:D【点睛】本题考查复数的四则运算、共轭复数及复数的模,考查基本运算能力,属于基础题.8、C【解析】
设出直线的方程,代入椭圆方程中消去y,根据判别式大于0求得t的范围,进而利用弦长公式求得|AB|的表达式,利用t的范围求得|AB|的最大值.【详解】解:设直线l的方程为y=x+t,代入y2=1,消去y得x2+2tx+t2﹣1=0,由题意得△=(2t)2﹣1(t2﹣1)>0,即t2<1.弦长|AB|=4.故选:C.【点睛】本题主要考查了椭圆的应用,直线与椭圆的关系.常需要把直线与椭圆方程联立,利用韦达定理,判别式找到解决问题的突破口.9、C【解析】
根据三视图作出几何体的直观图,结合三视图的数据可求得几何体的体积.【详解】根据三视图还原几何体的直观图如下图所示:由图可知,该几何体是在棱长为的正方体中截去四棱锥所形成的几何体,该几何体的体积为.故选:C.【点睛】本题考查利用三视图计算几何体的体积,考查空间想象能力与计算能力,属于基础题.10、C【解析】
分别求解不等式得到集合,再利用集合的交集定义求解即可.【详解】,,∴.故选C.【点睛】本题主要考查了集合的基本运算,难度容易.11、B【解析】
由奇偶性定义可判断出为偶函数,由单调性的性质可知在上单调递增,由此知在上单调递减,从而将所求不等式化为,解绝对值不等式求得结果.【详解】由题意知:定义域为,,为偶函数,当时,,在上单调递增,在上单调递减,在上单调递增,则在上单调递减,由得:,解得:或,的取值范围为.故选:.【点睛】本题考查利用函数的单调性和奇偶性求解函数不等式的问题;奇偶性的作用是能够确定对称区间的单调性,单调性的作用是能够将函数值的大小关系转化为自变量的大小关系,进而化简不等式.12、B【解析】
由题意得出的值,进而利用离心率公式可求得该双曲线的离心率.【详解】双曲线的渐近线方程为,由题意可得,因此,该双曲线的离心率为.故选:B.【点睛】本题考查利用双曲线的渐近线方程求双曲线的离心率,利用公式计算较为方便,考查计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
求出函数的导数,利用导数的几何意义令,即可求出切线斜率.【详解】,,,即曲线在处的切线的斜率.故答案为:【点睛】本题考查了导数的几何意义、导数的运算法则以及基本初等函数的导数,属于基础题.14、【解析】
利用求出公差,结合等差数列的通项公式可求.【详解】设公差为,因为,所以,即.所以.故答案为:【点睛】本题主要考查等差数列通项公式的求解,利用等差数列的基本量是求解这类问题的通性通法,侧重考查数学运算的核心素养.15、13【解析】
根据点在直线上可求得,由等比中项的定义可构造方程求得结果.【详解】在上,,成等比数列,,即,解得:.故答案为:.【点睛】本题考查根据三项成等比数列求解参数值的问题,涉及到等比中项的应用,属于基础题.16、【解析】
设正四棱柱的底面边长,高,再根据柱体、锥体的体积公式计算可得.【详解】解:设正四棱柱的底面边长,高,则,即故答案为:【点睛】本题考查柱体、锥体的体积计算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)乙同学正确;(2).【解析】
(1)根据变量且有线性负相关关系判断甲不正确.根据回归直线方程过样本中心点,判断出乙正确.(2)由线性回归方程得到的估计数据,计算出误差,求得“理想数据”的个数,由此利用古典概型概率计算公式,求得所求概率.【详解】(1)已知变量具有线性负相关关系,故甲不正确,,代入两个回归方程,验证乙同学正确,故回归方程为:(2)由(1)得到的回归方程,计算估计数据如下表:021212由上表可知,“理想数据”的个数为.用列举法可知,从个不同数据里抽出个不同数据的方法有种.从符合条件的个不同数据中抽出个,还要在不符合条件的个不同数据中抽出个的方法有种.故所求概率为【点睛】本小题主要考查回归直线方程的判断,考查古典概型概率计算,考查数据处理能力,属于中档题.18、(1);(2)从而的分布列为012;(3).【解析】
(1)运用概率的计算公式求概率分布,再运用数学期望公式进行求解;(2)借助题设条件运用贝努力公式进行分析求解:(1)记所选取额两家商家加入团购网站的数量相等为事件,则,所以他们加入团购网站的数量不相等的概率为.(2)由题,知的可能取值分别为0,1,2,,,从而的分布列为012.(3)所调查的50家商家中加入了两个团购网站的商家有25家,将频率视为概率,则从市中任取一家加入团购网站的商家,他同时加入了两个团购网站的概率为,所以,所以事件“”的概率为.19、(1)见解析(2)1【解析】
(1)选②,③.可得,结合,求得.即可;若选①,②.由可得由,求得.即可;若选①,③,可得,又,可得,即可;(2)化简,根据角的范围求最值即可.【详解】(1)若选②,③.,,,,又,.的面积.若选①,②.由可得,,,又,.的面积.若选①,③,,又,,可得,的面积.(2),当时,有最大值1.【点睛】本题考查了正余弦定理,三角三角恒等变形,考查了计算能力,属于中档题.20、(1),;(2),,.【解析】
(1)直接利用同角三角函数关系式的变换的应用求出结果.(2)首先把函数的关系式变形成正弦型函数,进一步利用正弦型函数的性质的应用求出结果.【详解】(1)由题意得,,(2)由,解得,所以对称轴为,.由,解得,所以单调递增区间为.,【点睛】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力,属于基础题型.21、(1);(2)【解析】
(1)由,可求出的值,进而可求得的解析式;(2)分别求得和的值域,再结合两个函数的值域间的关系可求出的取值范围.【详解】(1)因为,所以,解得,故.(2)因为,所以,所以,则,图象的对称轴是.因为,所以,则,解得,故的取值范围是.【点睛】本题考查了三角函数的恒等变换,考查了二次函数及三角函数值域的求法,考查了学生的计算求解能力,属于中档题.22、(Ⅰ)存在点满足题意,且,证明详见解析;(Ⅱ).【解析】
(Ⅰ)可考虑采用补形法,取的中点为,连接,可结合等腰三角形性质和线面垂直性质,先证平面,即,若能证明,则可得证,可通过我们反推出点对应位置应在处,进而得证;(Ⅱ)采用建系
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 购销合同的变更规定
- 饲料旺季购销合同
- 商务秘书共同研发合同
- 房屋买卖合同应注意的风险防范
- 全面机械购销合同全文
- 冰柜超市设备购销合同
- 专业人员外包服务合同
- 红砖多孔砖定制购销合同
- 招商服务合同成长
- 授权融资借款合同模板
- 幼儿园家长助教日主题班会《保护眼睛》适用于幼儿园家长助教模板
- 2024年六年级上册《综合实践活动》全册教案
- 小学生预防早婚早育主题班会
- 上海市虹口区2023-2024学年八年级下学期期末考试语文试题
- 废气治理设施运行管理规程
- W -S-T 433-2023 静脉治疗护理技术操作标准(正式版)
- JTS-131-2012水运工程测量规范
- 【经济学基础课程案例探析报告:“双十一”的经济学探析5100字】
- 时尚流行文化解读智慧树知到期末考试答案章节答案2024年天津科技大学
- 2024年瓦斯爆炸事故专项应急演练桌面推演实施方案
- 读书课件分享(认知觉醒)
评论
0/150
提交评论