版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届辽宁凌源市数学高三上期末复习检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是双曲线的左、右焦点,若点关于双曲线渐近线的对称点满足(为坐标原点),则双曲线的渐近线方程为()A. B. C. D.2.历史上有不少数学家都对圆周率作过研究,第一个用科学方法寻求圆周率数值的人是阿基米德,他用圆内接和外切正多边形的周长确定圆周长的上下界,开创了圆周率计算的几何方法,而中国数学家刘徽只用圆内接正多边形就求得的近似值,他的方法被后人称为割圆术.近代无穷乘积式、无穷连分数、无穷级数等各种值的表达式纷纷出现,使得值的计算精度也迅速增加.华理斯在1655年求出一个公式:,根据该公式绘制出了估计圆周率的近似值的程序框图,如下图所示,执行该程序框图,已知输出的,若判断框内填入的条件为,则正整数的最小值是A. B. C. D.3.已知集合A={y|y},B={x|y=lg(x﹣2x2)},则∁R(A∩B)=()A.[0,) B.(﹣∞,0)∪[,+∞)C.(0,) D.(﹣∞,0]∪[,+∞)4.已知方程表示的曲线为的图象,对于函数有如下结论:①在上单调递减;②函数至少存在一个零点;③的最大值为;④若函数和图象关于原点对称,则由方程所确定;则正确命题序号为()A.①③ B.②③ C.①④ D.②④5.若复数满足,则(其中为虚数单位)的最大值为()A.1 B.2 C.3 D.46.在复平面内,复数(为虚数单位)对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.元代数学家朱世杰的数学名著《算术启蒙》是中国古代代数学的通论,其中关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序图,若,,则输出的()A.3 B.4 C.5 D.68.给出以下四个命题:①依次首尾相接的四条线段必共面;②过不在同一条直线上的三点,有且只有一个平面;③空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角必相等;④垂直于同一直线的两条直线必平行.其中正确命题的个数是()A.0 B.1 C.2 D.39.金庸先生的武侠小说《射雕英雄传》第12回中有这样一段情节,“……洪七公道:肉只五种,但猪羊混咬是一般滋味,獐牛同嚼又是一般滋味,一共有几般变化,我可算不出了”.现有五种不同的肉,任何两种(含两种)以上的肉混合后的滋味都不一样,则混合后可以组成的所有不同的滋味种数为()A.20 B.24 C.25 D.2610.集合,,则()A. B. C. D.11.网络是一种先进的高频传输技术,我国的技术发展迅速,已位居世界前列.华为公司2019年8月初推出了一款手机,现调查得到该款手机上市时间和市场占有率(单位:%)的几组相关对应数据.如图所示的折线图中,横轴1代表2019年8月,2代表2019年9月……,5代表2019年12月,根据数据得出关于的线性回归方程为.若用此方程分析并预测该款手机市场占有率的变化趋势,则最早何时该款手机市场占有率能超过0.5%(精确到月)()A.2020年6月 B.2020年7月 C.2020年8月 D.2020年9月12.为双曲线的左焦点,过点的直线与圆交于、两点,(在、之间)与双曲线在第一象限的交点为,为坐标原点,若,且,则双曲线的离心率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知内角,,的对边分别为,,.,,则_________.14.已知在△ABC中,(2sin32°,2cos32°),(cos77°,﹣cos13°),则⋅_____,△ABC的面积为_____.15.正四棱柱中,,.若是侧面内的动点,且,则与平面所成角的正切值的最大值为___________.16.已知无盖的圆柱形桶的容积是立方米,用来做桶底和侧面的材料每平方米的价格分别为30元和20元,那么圆桶造价最低为________元.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知正实数满足.(1)求的最小值.(2)证明:18.(12分)在平面直角坐标系中,已知椭圆的短轴长为,直线与椭圆相交于两点,线段的中点为.当与连线的斜率为时,直线的倾斜角为(1)求椭圆的标准方程;(2)若是以为直径的圆上的任意一点,求证:19.(12分)设函数.(1)若恒成立,求整数的最大值;(2)求证:.20.(12分)设函数.(1)当时,求不等式的解集;(2)若存在,使得不等式对一切恒成立,求实数的取值范围.21.(12分)在平面直角坐标系中,直线的倾斜角为,且经过点.以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线,从原点O作射线交于点M,点N为射线OM上的点,满足,记点N的轨迹为曲线C.(Ⅰ)求出直线的参数方程和曲线C的直角坐标方程;(Ⅱ)设直线与曲线C交于P,Q两点,求的值.22.(10分)在如图所示的几何体中,四边形ABCD为矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=2,点P在棱DF上.(1)若P是DF的中点,求异面直线BE与CP所成角的余弦值;(2)若二面角D﹣AP﹣C的正弦值为,求PF的长度.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
先利用对称得,根据可得,由几何性质可得,即,从而解得渐近线方程.【详解】如图所示:由对称性可得:为的中点,且,所以,因为,所以,故而由几何性质可得,即,故渐近线方程为,故选B.【点睛】本题考查了点关于直线对称点的知识,考查了双曲线渐近线方程,由题意得出是解题的关键,属于中档题.2、B【解析】
初始:,,第一次循环:,,继续循环;第二次循环:,,此时,满足条件,结束循环,所以判断框内填入的条件可以是,所以正整数的最小值是3,故选B.3、D【解析】
求函数的值域得集合,求定义域得集合,根据交集和补集的定义写出运算结果.【详解】集合A={y|y}={y|y≥0}=[0,+∞);B={x|y=lg(x﹣2x2)}={x|x﹣2x2>0}={x|0<x}=(0,),∴A∩B=(0,),∴∁R(A∩B)=(﹣∞,0]∪[,+∞).故选:D.【点睛】该题考查的是有关集合的问题,涉及到的知识点有函数的定义域,函数的值域,集合的运算,属于基础题目.4、C【解析】
分四类情况进行讨论,然后画出相对应的图象,由图象可以判断所给命题的真假性.【详解】(1)当时,,此时不存在图象;(2)当时,,此时为实轴为轴的双曲线一部分;(3)当时,,此时为实轴为轴的双曲线一部分;(4)当时,,此时为圆心在原点,半径为1的圆的一部分;画出的图象,由图象可得:对于①,在上单调递减,所以①正确;对于②,函数与的图象没有交点,即没有零点,所以②错误;对于③,由函数图象的对称性可知③错误;对于④,函数和图象关于原点对称,则中用代替,用代替,可得,所以④正确.故选:C【点睛】本题主要考查了双曲线的简单几何性质,函数的图象与性质,函数的零点概念,考查了数形结合的数学思想.5、B【解析】
根据复数的几何意义可知复数对应的点在以原点为圆心,1为半径的圆上,再根据复数的几何意义即可确定,即可得的最大值.【详解】由知,复数对应的点在以原点为圆心,1为半径的圆上,表示复数对应的点与点间的距离,又复数对应的点所在圆的圆心到的距离为1,所以.故选:B【点睛】本题考查了复数模的定义及其几何意义应用,属于基础题.6、C【解析】
化简复数为、的形式,可以确定对应的点位于的象限.【详解】解:复数故复数对应的坐标为位于第三象限故选:.【点睛】本题考查复数代数形式的运算,复数和复平面内点的对应关系,属于基础题.7、B【解析】分析:根据流程图中的可知,每次循环的值应是一个等比数列,公比为;根据流程图中的可知,每次循环的值应是一个等比数列,公比为,根据每次循环得到的的值的大小决定循环的次数即可.详解:记执行第次循环时,的值记为有,则有;记执行第次循环时,的值记为有,则有.令,则有,故,故选B.点睛:本题为算法中的循环结构和数列通项的综合,属于中档题,解题时注意流程图中蕴含的数列关系(比如相邻项满足等比数列、等差数列的定义,是否是求数列的前和、前项积等).8、B【解析】
用空间四边形对①进行判断;根据公理2对②进行判断;根据空间角的定义对③进行判断;根据空间直线位置关系对④进行判断.【详解】①中,空间四边形的四条线段不共面,故①错误.②中,由公理2知道,过不在同一条直线上的三点,有且只有一个平面,故②正确.③中,由空间角的定义知道,空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补,故③错误.④中,空间中,垂直于同一直线的两条直线可相交,可平行,可异面,故④错误.故选:B【点睛】本小题考查空间点,线,面的位置关系及其相关公理,定理及其推论的理解和认识;考查空间想象能力,推理论证能力,考查数形结合思想,化归与转化思想.9、D【解析】
利用组合的意义可得混合后所有不同的滋味种数为,再利用组合数的计算公式可得所求的种数.【详解】混合后可以组成的所有不同的滋味种数为(种),故选:D.【点睛】本题考查组合的应用,此类问题注意实际问题的合理转化,本题属于容易题.10、A【解析】
计算,再计算交集得到答案.【详解】,,故.故选:.【点睛】本题考查了交集运算,属于简单题.11、C【解析】
根据图形,计算出,然后解不等式即可.【详解】解:,点在直线上,令因为横轴1代表2019年8月,所以横轴13代表2020年8月,故选:C【点睛】考查如何确定线性回归直线中的系数以及线性回归方程的实际应用,基础题.12、D【解析】
过点作,可得出点为的中点,由可求得的值,可计算出的值,进而可得出,结合可知点为的中点,可得出,利用勾股定理求得(为双曲线的右焦点),再利用双曲线的定义可求得该双曲线的离心率的值.【详解】如下图所示,过点作,设该双曲线的右焦点为,连接.,.,,,为的中点,,,,,由双曲线的定义得,即,因此,该双曲线的离心率为.故选:D.【点睛】本题考查双曲线离心率的求解,解题时要充分分析图形的形状,考查推理能力与计算能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
利用正弦定理求得角B,再利用二倍角的余弦公式,即可求解.【详解】由正弦定理得,,.故答案为:.【点睛】本题考查了正弦定理求角,三角恒等变换,属于基础题.14、【解析】
①根据向量数量积的坐标表示结合两角差的正弦公式的逆用即可得解;②结合①求出,根据面积公式即可得解.【详解】①2(sin32°•cos77°﹣cos32°•sin77°),②,,∴,∴.故答案为:.【点睛】此题考查平面向量与三角函数解三角形综合应用,涉及平面向量数量积的坐标表示,三角恒等变换,根据三角形面积公式求解三角形面积,综合性强.15、2.【解析】
如图,以为原点建立空间直角坐标系,设点,由得,证明为与平面所成角,令,用三角函数表示出,求解三角函数的最大值得到结果.【详解】如图,以为原点建立空间直角坐标系,设点,则,,又,得即;又平面,为与平面所成角,令,当时,最大,即与平面所成角的正切值的最大值为2.故答案为:2【点睛】本题主要考查了立体几何中的动点问题,考查了直线与平面所成角的计算.对于这类题,一般是建立空间直角坐标,在动点坐标内引入参数,将最值问题转化为函数的最值问题求解,考查了学生的运算求解能力和直观想象能力.16、【解析】
设桶的底面半径为,用表示出桶的总造价,利用基本不等式得出最小值.【详解】设桶的底面半径为,高为,则,故,圆通的造价为解法一:当且仅当,即时取等号.解法二:,则,令,即,解得,此函数在单调递增;令,即,解得,此函数在上单调递减;令,即,解得,即当时,圆桶的造价最低.所以故答案为:【点睛】本题考查了基本不等式的应用,注意验证等号成立的条件,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析【解析】
(1)利用乘“1”法,结合基本不等式求得结果.(2)直接利用基本不等式及乘“1”法,证明即可.【详解】(1)因为,所以因为,所以(当且仅当,即时等号成立),所以(2)证明:因为,所以故(当且仅当时,等号成立)【点睛】本题考查了基本不等式的应用,考查了乘“1”法的技巧,考查了推理论证能力,属于中档题.18、(1);(2)详见解析.【解析】
(1)由短轴长可知,设,,由设而不求法作差即可求得,将相应值代入即求得,椭圆方程可求;(2)考虑特殊位置,即直线与轴垂直时候,成立,当直线斜率存在时,设出直线方程,与椭圆联立,结合中点坐标公式,弦长公式,得到与的关系,将表示出来,结合基本不等式求最值,证明最后的结果【详解】解:(1)由已知,得由,两式相减,得根据已知条件有,当时,∴,即∴椭圆的标准方程为(2)当直线斜率不存在时,,不等式成立.当直线斜率存在时,设由得∴,∴由化简,得∴令,则当且仅当时取等号∴∵∴当且仅当时取等号综上,【点睛】本题为直线与椭圆的综合应用,考查了椭圆方程的求法,点差法处理多未知量问题,能够利用一元二次方程的知识转化处理复杂的计算形式,要求学生计算能力过关,为较难题19、(1)整数的最大值为;(2)见解析.【解析】
(1)将不等式变形为,构造函数,利用导数研究函数的单调性并确定其最值,从而得到正整数的最大值;(2)根据(1)的结论得到,利用不等式的基本性质可证得结论.【详解】(1)由得,令,,令,对恒成立,所以,函数在上单调递增,,,,,故存在使得,即,从而当时,有,,所以,函数在上单调递增;当时,有,,所以,函数在上单调递减.所以,,,因此,整数的最大值为;(2)由(1)知恒成立,,令则,,,,,上述等式全部相加得,所以,,因此,【点睛】本题考查导数在函数单调性、最值中的应用,以及放缩法证明不等式的技巧,属于难题.20、(Ⅰ).(Ⅱ).【解析】
(Ⅰ)时,根据绝对值不等式的定义去掉绝对值,求不等式的解集即可;(Ⅱ)不等式的解集为,等价于,求出在的最小值即可.【详解】(Ⅰ)当时,时,不等式化为,解得,即时,不等式化为,不等式恒成立,即时,不等式化为,解得,即综上所述,不等式的解集为(Ⅱ)不等式的解集为对任意恒成立当时,取得最小值为实数的取值范围是【点睛】本题考查了绝对值不等式的解法与应用问题,也考查了函数绝对值三角不等式的应用问题,属于常规题型.21、(Ⅰ)(t为参数),;(Ⅱ)1.【解析】
(Ⅰ)直接由已知写出直线l1的参数方程,设N(ρ,θ),M(ρ1,θ1),(ρ>0,ρ1>0),由题意可得,即ρ=4cosθ,然后化为普通方程;(Ⅱ)将l1的参数方程代入C的直角坐标方程中,得到关于t的一元二次方程,再由参数t的几何意义可得|AP|•|AQ|的值.【详解】(Ⅰ)直线l1的参数方程为,(t为参数)即(t为参数).设N(ρ,θ),M(ρ1,θ1),(ρ>0,ρ1>0),则,即,即ρ=4cosθ,∴曲线C的直角坐标方程为x2-4x+y2=0(x≠0).(Ⅱ)将l1的参数方程代入C的直角坐标方程中,得,即,t1,t2为方程的两个根,∴t1t2=-1,∴|AP|•|AQ|=|t1t2|=|-1|=1.【点睛
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024试剂生产与销售代理合作合同范本3篇
- 2024版工地吊车租赁合同2篇
- 二零二四年店铺租赁合同范本(个体户专用)
- 二零二四年南京二手房买卖合同附环保检测服务协议3篇
- 2024离婚协议公证格式范本模板
- 2025年度私人房产投资咨询与风险评估合同3篇
- 二零二五版农业机械承包与种植服务合同3篇
- 二零二四年定制化软件功能测试服务合同3篇
- 2025年度煤矿企业安全生产管理人员劳动合同示范4篇
- 二零二五年度股权代持合同违约责任与赔偿规定3篇
- 搭竹架合同范本
- Neo4j介绍及实现原理
- 锐途管理人员测评试题目的
- 焊接材料-DIN-8555-标准
- 工程索赔真实案例范本
- 重症医学科运用PDCA循环降低ICU失禁性皮炎发生率品管圈QCC持续质量改进成果汇报
- 个人股权证明书
- 医院运送工作介绍
- 重症患者的容量管理
- 学习游戏对中小学生学业成绩的影响
- 小学四年级上册递等式计算100题及答案
评论
0/150
提交评论