焦煤炉中英文对照外文翻译文献_第1页
焦煤炉中英文对照外文翻译文献_第2页
焦煤炉中英文对照外文翻译文献_第3页
焦煤炉中英文对照外文翻译文献_第4页
焦煤炉中英文对照外文翻译文献_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中英文对照外文翻译文献(文档含英文原文和中文翻译)原文:Energysavingandsomeenvironmentimprovementsincoke-ovenplantsAbstractTheenthalpyofinletcoalandfuelgasisdischargedfromacoke-ovenplantinthefollowingforms:chemicalandthermalenthalpyofincandescentcoke,chemicalandthermalenthalpyofcoke-ovengas,thermalenthalpyofcombustionexhaustgas,andwasteheatfromthebodyofthecokeoven.Inrecentyearstherecoveryofseveralkindsofwasteenergyfromcokeovenshasbeenpromotedmainlyforenergysavingpurposes,butalsofortheimprovementofenvironmentalconditions.Amongthevariousdevicesyetrealized,thesubstitutionoftheconventionalwetquenchingmethodwithacokedrycoolingisthemosttechnicallyandeconomicallyconvenient.Theaimofthispaperismainlyareviewofthemaintypesofcokedrycoolingplantsandadetailedexaminationoftheinfiuenceofsomeparameters,particularlyoftemperatureandpressureoftheproducedsteam,andontheenergyefficiencyoftheseplants.Introduction1.1.UsableenergyTheenergyofasystem-environmentcombinationisusuallydefinedastheamountofworkattainablewhenthesystemisbroughttoastateofunrestrictedequilibrium(thermal,mechanicalandchemical)bymeansofreversibleprocesses,involvingonlytheenvironmentatauniformlyconstanttemperatureandpressureandcomprisingsubstancesthatareinthermodynamicequilibrium.Notwithstandingthequitedifferentmeaning,chemicalenergiesdifferfromlowerheatingvaluesslightly,asisdiscussedin[1,2].Thechemicalenergygenerallyfallsbetweenthehigherandlowerheatingvaluesbutisclosertothehigher.Nomenclaturecpconstantpressureheatcapacity[kJ/(kgK)]Exenergy[kJ]Exuusableenergy[kJ]exspecificenergy[kJ/kg]Gvvolumeflowrate[m3(nTp)/h]Gv*specificvolumeflowrate[m3(nTp)/tdrycoke]ispecificenthalpy[kJ/kg]ppressure[bar]sspecificentropy[kJ/(kgK]Ttemperature[C,K]Toenvironmenttemperature[C,K]vspecificvolume[m3/kg]Фenergyeffciency[dimensionless]Nonetheless,thechemicalenergyisnotsuitableforquantifyingthetechnicalvalueofafuelfortworeasons:(i)Priortoconsideringheattransfer,itisnecessarytoaccountfortheessentiallyirreversiblecombustionprocess,whichdecreasestheexergiesofvariousfuelsgreatlyindifferentways.(ii)Theworkcorrespondingtoreversibleexpansionofseveralcomponents(inparticularCO2)downtotheiratmosphericpartialpressurescannotbeobtainedfromthecombustiongas,asisimplicitintheenergyde®nition.Inaddition,thisworkdifferswithfueltype.Consequently,Bisio[3]definedusableenergyastheexergeticvaluefollowinganadiabaticcombustionwithagivenexcessairratio(e.g.,1.1)minustheenergylossresultingfromirreversiblemixingofcom-bustiongaswiththeatmosphereafterhavingreachedatmosphericpressureandtemperature.Theratioofusableenergytolowerheatingvalueofagivenfuelistermedthemeritfactor.Thisfactorisalwayslessthanoneandincreasesasthetechnicalandeconomicvaluesofafuelrise.Theparameter“usableexergy”,ashasbeende®nedandappliedin[3],issuitableintheexamin-ationofplants,thatutilizefuelmixing,whentheaimistoreduceboththetotalfuelconsumptionand,chiefly,themorevaluablecomponentone.1.2.Coke-ovenenergyrecoveriesThechemicalenergyofafuelgas,whichisusedforacokeoven,amountsto2500-3200MJ/tdrycoal.Thisenergy,degradedtothermalenergyofvariousoperativevalues,isdischargedfromtheplantinsuchforms:Thermalenergyofincandescentcoke(43-48%)Thermalenthalpyofcoke-ovengas(24-30%)Thermalenergyofwastegas(10-18%)Permeability,convectionandradiationheatfromtheexternalsurfaceofcokeoven,andvariouslosses(10-17%)Theoilcrisisof1973createdastrongimpulsetowardsanewthinkingontheconsumptionandrationalutilizationofenergy,particularlyinthehighlyindustrializedcountrieswithlimitedindigenousenergyresources.Atthesametime,attentionthroughouttheworldwasalsoincreas-inglyfocusedonenvironmentproblems.Thepossibleutilizationofthethermalenergyofincandescentcokeisdealtwithinmanypapers.Usually,incokingtechnologythecokeiscooledbybeingsprayedwithwaterunderspecialquenchingtowers.Inrecentyears,thevarioustypesofdrycoolingplantsallowtherecov-eryofnearly80%ofthethermalenergyofincandescentcoke.Thepossibilitiesofutilizingreco-veredenergyareasfollows:Productionofsteamandelectricity.Preheatingofcokingcoal.Roomheating.Thethermalenergyofcoke-ovengas,whichisthesecondlargestintheabovelisting,hassofarbeenrarelyutilized.Variousstudies,however,havebeencarriedoutforthepossibleutilizationofthiswasteenergyandatechniquehasrecentlybeencommercializedinJapan.Thethermalenergyofcombustionexhaustgasisutilizedtopreheatboththecombustionairandfuelgasmixturethroughalarge-capacityregenerator.Consequentlythewastegastemperatureisreducedtoapproximately200C.Lately,thefurtherrecoveryofheatfromwastegashasbeenreportedinafewcasesusingaheatpipeinstalledinthe¯ue.Thevariouskindsofheatwastedfromthecoke-ovenexternalsurfacehavebeendecreasedbythereinforcedsealingandbetterthermalinsulationofcokeovens.Inthefollowingsections,themaintypesofcoke-ovenenergyrecoverieswillbeconsideredforacomparison.1.3.ProtectionoftheenvironmentAswiththeproblemofenergysavingandrecovery,thelastyearshavebeencharacterizedbyincreasedpreventionofatmosphericandwaterpollutionbyindustrialemissionsanddomesticwastes.Worktocontrolatmosphericpollutionhasbeencarriedoutinalldevelopedcountries.AccordingtoZaichenkoetal.,asaresultofincludingmeasuresforenvironmentalprotection,theinvestmentandthecokingcostsareincreasedby15%.However,ifthecalculationsincludedallowanceforlossescausedbyadverseeffectsofatmosphericpollutiononworkershealth,instal-lationofengineeringfacilitiesformaintainingcleanaircanbecost-effective.Inanycase,itisobviousthatanenvironmentalfacilityisparticularlytemptingwhen,aswithcokedrycoolingplants,inadditiontoenvironmentadvantages,anenergyrecoverycanbeassociated,eveniftheinvestmentcostsarehigherandnotjusti®edonlybyenergysaving.2.Cokedryquenching2.1.Methodsforenergyrecoveryandsavingfromcokeatthecoke-ovenoutletTheideaofrecoveringthermalenergyfromincandescentcokebymeansofaninertgasdatesbacktotheearly1900s.The®rstindustrialplants,designedparticularlybytheSulzerBrothers(Winterthur,Switzerland)werecarriedoutinthe'20sand'30sbothintheUSAandinEurope(Germany,France,UK,Switzerland)[4,18].However,thegreaterinvestmentcostsofdryquench-ingplants,incomparisonwiththoseofthewetquenchingones,wereamortizedwithdif®cultyinaperiodinwhichenergywasverycheap.Consequently,dryquenchingplantsweregivenup.Intheearly1960s,anewinterestarose:intheUSSR,drycoolingplants,whichbasicallyfollowedtheSulzerdesign,werebuiltwiththeprimaryaimofpreventingthecokefromfreezinginwinter,ashappenswithwetquenchedcoke.Theplant,constructedinvariouscountriesaccord-ingtotheSovietGiprokoksprocess[6],isschematicallyshowninFig.1.Thered-hotcoke,atatemperatureofabout1100C,ispushedfromovens,A,intocontainersplacedoncars.Loadedcarsaremovedtothedrycoolingplant,wherecontainers,B,areliftedbybridgecrane,C,andunloadedthroughthechargingsystem,D,intopre-chamber,E.Then,hotcokeistransferredintothecoolingchamber,F,insmallbatches.Afterleavingthecoolingchamberthroughthedischarg-ingsystem,G,cokeruns,atatemperatureofabout200C,ontoconveyorbelt,H.Cokeisrefriger-atedbyacirculatinggas,composedmainlybynitrogenandmovedbythemainblower,I.Thisgastransfersthermalenergyinboiler,N,whichproducessuperheatedsteam,O,atapressureupto100bar.Beforeenteringtheboiler,thegasisscrubbedinthecoarsede-duster,J,removingcoarseparticlesofcokedusttoprotecttheboilersurfacefromerosion.Afterleavingtheboiler,thegasstreamsthroughthe®nededuster,K,where®nedustisscrubbedout.In1983adrycoolingplant,schematicallyshowninFig.2,beganoperationinGermany.Itsmaincharacteristicisthat1/3ofthethermalenergyistransferreddirectlyfromthecoketothevaporizingwaterandtheremaining2/3throughtheinertgas.Theadvantagesarealowerquantityofcirculatinggaswithacorrespondinglylowerconsumptionofelectricalenergybytheblowerandagreaterenergyrecovery.Refrigeratingwallsinthecoolingchamberrepresentthecriticalpointoftheplanti.InGermany,acombinationofthecokedrycoolingandcoalpreheatingplanthasbeendeveloped[5,9,14±16].Thissystemrealizesprimaryenergysaving(e.g.gas)insteadofenergyrecoveryoflowerenergyvalue(steam)andthusitisthermodynamicallypreferred(see,e.g.,[29]).Inaddition,thewell-knownadvantagesofthesingleprocesseswithrespecttocokequalityandincreasedoutputhavebeencon®rmed.Thecompletelyclosedsystempermitssignificantenvironmentalimprovementsinthecokingplantsector,avoidingtheimmissionsofdustintotheatmosphereinapracticallycompleteway.Jung[13]consideredtheconvenienceofusingwatergas(H2+CO)astheheattransferfluid.Indeed,watergashasathermaldiffusivitythreetimesthatofnitrogen,andthusitallowsustoreducetheboilersurfaceby50%.Inananonymousnoteof“MetalProducing”[10],itwasstatedthatthemostconvenientusesoftheenergyrecoveredfromcokedryquenching(atleastintheUSA)arethefollowing:thedryingofcoalandtheheatingofmakeupwaterforboilersthatprovidesteaminthecokeplantperse.Indeed,theenergyisavailablewhenthecokeplantisrunning,whichisofcoursewhenitisrequired.Inaddition,thesequantitiesofenergymatchfairlywell.2.2.Researchontheoptimaltemperaturesandpressuresofsteam2.2.1.GeneralitiesaboutenergyandenergyanalysisInFig.3energyandenergyflowdiagramsarereportedforatypicalcokedrycoolingplantwithinletcoketemperature=1050°Candoutletcoketemperature=200°C.Bothdiagramsareuse-ful,however,onlyenergyflowissuitabletovisualizetheoperativevalueofthevariousenergies.FromFig.3oneremarksthatwithsuchdevicesitispossibletorecoverabout44%oftheenergyvalueoftheincandescentcokethermalenergy,correspondingtoaboutthe20%oftheenergyvalueoftheinletcoal.Owingtotherelativelylowvalueoftheenergyefficiencyofacokedryquenchingsystem,itseemsinterestingtoresearchtheoptimalvaluesofsomeparameters,andinparticularthecharac-teristicsofthesteamproduced(pressureandtemperature)inordertoobtainthemorecon-venientplant.Acomputeranalysishasbeenmade,assumingsomeinputdata,experimentallyobtainedfromarecentactualplant.Theinputdataarethetemperatureandpressurevaluesofthegasflowingthroughtheplant,themassflowratesofcokeattheinletandoutletofthecokecoolingchamber,andattheoutletofthecoarsededuster,themassflowrate,temperatureandpressureofsteam,theblowerisentropicefficiency,andtheefficiencyintheelectromechanicalconversionoftheelectroblower.Thefundamentaldataare:quenchedcokemassflowrate56t/hsteammassflowrate28t/hinletcoketemperature1050°Coutletcoketemperature200°Cspecificvolumeflowrateofgas1650m3(nTp)/tdrycoke.Byvaryingthetemperatureandpressureofsteamand/orthegasflowrate,onehasdeterminedthevariationofthesystemenergyefficiency,Ф,sodefined:where:Exst=steamexergy;Exwa=boilerfeedwater;Exc=energycorrespondingtotheelectricalworkoftheelectroblower;Exco=cokephysicalenergy(thus,excludingthechemicalcomponentofenergytobeutilizedinblastfurnace).2.2.2.SpecificenergydependenceupontemperatureandpressureLetusconsiderspecificenergyasafunctionoftemperature,Tandpressure,p.InthediagramofFig.4,thesteamspecificenergyforanopensystemisreportedasafunctionofpressureforvariousvaluesoftemperature.ItistoberemarkedthatspecificenergyincreasesalwaysasTincreasesatconstantp(fortemperaturesabovethatoftheenvironment),whereasnotalwaysexincreasesasprisesatconstantT.Thisresultseemspuzzlingandcontrarytotheconceptofexergy.Tojustifythetopicinavalidway,letconsiderthedefinitionofspecificenergyforanopensys-tem:andthenThevariationofspecificenthalpy,di,andofspecificentropy,ds,asafunctionofTandpcanbewrittenas[30]:andthenFromtheserelations,oneobtainsthatenergyincreasesastemperaturerises,whenT>To,andtheoppositeisverified,whenT<To,asiswellknown.Abouttheinfluenceofpressure,onecansaythatenergyincreasesaspressurerises,when(T-To.)and∂1vtphaveoppositesign,and,sincewithveryfewexceptions∂1vtp>0,when(T-To)>0.When(T-To)and∂1vtphavethesamesign,onecannotexcludethepossibilitythatexergydecreaseswhenpressuregoesup.Thisindeedisverifiedinarangeinwhichtheattractiveforcesaregreatlyprevailingontherepulsiveforces[31].Fortheproblemthatishereconsidered,thishappensforsuperheatedsteamnotfarfromthecriticalpoint.ThisanalysisjustifiesthatsomeisothermalcurvesofFig.4haveamaximumforagivenpressure.Ontheotherhand,thisresultcouldbeyetpuzzling.Indeed,itiswellknownthattheoperativevalueincreasesalwayswithpressure.Tothispurpose,letuscomparethefollowingparameters:Fromtheserelations,intherangeinwhichforthesteam∂2exTp<0itfollows:andthenitfollowsthat,ifenergydecreasesaspressuregoesdown,thedecreaseofenthalpyishigherandconsequently,eveniftheoperativeoftheunitmassofsteamgoesdown,theratioofthisoperativevaluetothe“cost”forobtainingit(i.e.thenecessaryheat)goesupandthisisinagreementwiththefactthatahigherpressureistechnicallyalwaysmorevaluable.2.2.3.Analysisresults“Recoveredexergy”hasbeendetermined;thenumeratorofrelation(1)givesthisparameter.Asanexample,inFigs.5and6therecoveredenergyisshownforonevalueofthespecificvolumeflowrateofgas,alternatively,withsteampressureinabscissae(andtemperatureasparameter)orwithsteamtemperatureinabscissae(andpressureasparameter).Oneremarksthattherecoveredenergygoesupalmostlinearlyasthesteamtemperatureincreases,andgoesupalwaysasthesteampressurerises(contrarytothesteamspecificentropy),butwithnegativesecondderivative.InFig.7therecoveredenergyisshownforonevalueofsteamtemperatureasafunctionofthespecificvolumeflowrateofgas(inabscissae)forvarioussteampressures(reportedasparameter).Tojustifythediagrams,itmustberemarkedthatasthespecificvolumeflowrateofgasincreases,theheatexchangedintheboilerbetweenthegasandthewater-steamincreaseswithnegativesecondderivative.Consequently,foreveryfixedcoupleofvaluesofTandp,theteamflowrateandthetotalsteamenergyexhibitthesamebehavior.Onthecontrary,owingtotheincreaseofthenecessarygascompressionwork,therecoveredenergyhasamaximumincorrespondencewithagivenspecificvolumeflowrateofgas.Thismaximum,foreverytemperaturevalue,tendstoahigherspecificvolumeflowrate,asthepressureincreases.Inparticular,atp=80bar,themaximumisneartothevalueGv*=1650m3(nTp)/tdrycoke.Thevariationsoftheenergyefficiency,owingtoitsdefinitionandtheconstancyofthephysicalenergyoftheincandescentcoke,aretotallysimilartothoseoftherecoveredexergy.Thus,onlytwodiagramsforenergyefficiencyincorrespondencetoaspecificvolumeflowrateofgasGv*=1650m3(nTp)/tdrycokearereported.InFigs.8and9,energyefficiencyvssteampressure(withsteamtemperatureasparameter)orvsthesteamtemperature(withsteampressureasparameter),respectively,isreported.Onthebasisofthevariousdiagrams(notallherereported),thespecificvolumeflowrateofgasGv*=1650m3(nTp)/tdrycokeseemstobethemoreconvenient.Theverylowincreaseoftherecoveredenergy(andthusoftheenergyefficiency),thatcanbenotedforsomevaluesofthecouple(T,p)ofthesteamincorrespondencetovaluesofthespecificvolumeflowrateofgasGv*slightlyhigherthan1650m3(nTp)/tdrycokedoesnotprobablycompensatethehigherplantandmaintenancecosts.Thetemperatureriseallowsaremarkableenergyefficiencyincrease.Thus,itseemsconvenienttochoosethemaximumtemperatureconsistentwiththeuseofmaterialswhicharenotparticularlyexpensive.ThelimitvalueofT=540°Ccanbepresentlychosen.Asthepressurerises,energyefficiencyincreasesremarkablytillapressureofabout80bar,andthentheincreaseisprogressivelyreduced.Forwhatisknowntoauthors,themaximumvaluetillnowappliedisof103barinasteelplantofJapan.Thus,itseemsthatthemoreconvenientpressurevalueisabout100bar.焦炉设备的能源节约和环境改善摘要在下面几种形式中焦炉设备的进口煤和燃气的热量是不可控制的:炽热焦的化学和热焓,焦炉煤气的化学和热焓,燃烧排放气的热焓,还有从焦煤炉体中浪费的大量热量。在近些年从焦煤炉体中重复利用的一些浪费的能源,达到了主要能源节约的目的,同时也为环境改善提供了一定的条件。多种设备也已实现利用,用焦煤的干燥冷却来替代传统的淬火方式,这是最科学最经济方便的。这篇论文的目的是主要讨论焦炉干燥装置的主要型号和一些参数对能源节约的影响做出的一些详细讨论,特别是生产蒸汽的温度和压力,还有这些设备的能源效率。简介1.1可用能源一个系统环境组合的能源,当这个系统通过可逆程序带来一种不受限的平衡的情形(热能,机械能和化学能)时,通常被定义为可做功,仅仅受限于环境在一致常温、常压和在热力学平衡中的物质构成。尽管意义十分不同,化学能不同于轻微的低价热能,这在[1,2]中会被讨论。这个化学能一般在高价和低价的热量中间,但是更靠近高价热能一些。专业术语cp常压下的热能[kJ/(kgK)]Ex内能[kJ]Exu可利用能量[kJ]ex特定内能[kJ/kg]Gv流动速度[m3(nTp)/h]Gv*特定流动速度[m3(nTp)/tdrycoke]i特定焓[kJ/kg]p压力[bar]s特定熵[kJ/(kgK]T温度[C,K]To环境温度[C,K]v特定体积[m3/kg]Ф能源率[dimensionless]虽然如此,化学能不适合用来量化燃料的技术价值的两个原因:(i)先要考虑到热量转化,说明不可逆燃烧过程是必要的,在很大程度上减少了不同方式中各种燃料的能量。(ii)这个相应不可逆膨胀过程的一些成分(特别是二氧化碳)减少了大气层的部分压力,其是不能从燃气中获得,因为其隐藏在能量定义中。另外,这个过程燃料型号不同。因此,Bisio[3]定义为可利用能量,因为能量价值随着绝热燃料用过量空气率(e.g.,1.1)减去混合燃料不可逆中的能量损失,然后大气达到大气压力和温度。可利用能率的给料低价热能是被认为优势因素。这个因素总是少于某个,并且随着燃料的增加,科技和经济价值也增加。“可利用能”这个参数,被定义和应用在[3],适合电站的检查,利用燃料混合的目的是减少总燃料的消耗,主要的这个参数是更重要的组成之一。1.2焦煤炉的能源利用被用于焦煤炉的燃料化学能,总和为2500-3200MJ/tdrycoal。这个能量被分解为多种有效热能,从设备中以多种形式排放出去:炽热焦的热能(43-48%)焦煤燃气的热焓(24-30%)废气的热能(10-18%)导磁系数,焦煤炉的外部表面的对流传热和辐射传热,还有多种损失(10-17%)1973年的石油危机创造了一个朝着消费新想法和能源利用合理性的强大动力,特别是在高工业化程度的城市被限制在本土的能源。同时,世界也通过其注意力增加了对环境问题的重视。炽热焦的可利用热能在许多论文中处理过。通常,在焦炭技术中,焦炭被通过在淬火塔中散布水的方式来冷却。在近几年,多种型号的干燥冷却电站允许恢复炽热焦的热能的将近80%。最可能循环利用的能量如下:蒸汽和电能的生产焦炭煤的预热空间热焦煤气体的热能是上面清单上的第二大能量,目前很少被利用。然而,多种研究关于可利用废能被实施,并且其技术最近在日本商业化。燃烧排出的气体的热能是通过一个大容量的蓄热器被利用来预热空气和燃料气体混合物的。因此废气的温度是减少的,大约200°C。近来,从废气中进一步重复利用热量,据报道是把热力管安装在烟道里。多种热能是从焦煤炉体外表面浪费的,通过对焦煤炉体的加密和更好的热孤立系统可以减少。在下面的文章中,焦煤炉的主要型号的能源重复利用将会通过考虑对比。1.3环境保护随着能源节约和重复利用的难题,最近这些年的特点是通过增加对大气和被工业排放和家庭废物的水污染预防。在所有的发展中国家中控制大气污染的工作被实施。根据Zaichenkoetal,作为一个环境保护措施的结果,投资和焦炭的花费增加到了15%。然而,如果把工人们通过大气污染的不利影响引起的损失也计算在内的话,装置之所以高效能是其设计因素是维持纯净的空气。在任何情形下,显而易见一个环境设备是特别吸引人的,除了环境优势,焦煤冷却设备和能源的重复利用是关联的,甚至投资花费更高,并且不是仅仅通过能源节约调整的。焦炭干淬火2.1能源重复利用的方法和节约从焦炉输出的焦煤炽热焦炭通过惰性气体再生热能的方法可以追溯到20世纪初。第一个特殊设计的工厂,在20世纪20年代至30年代在美国和欧洲被SulzerBrothers(Winterthur,Switzerland)实施。然而,干淬火比是淬火投资花费更大,在能源非常便宜的时期分期付款是困难的。结果,放弃了干淬火。在20世纪60年代,一则新闻引起了关注,在USSR,干燥冷却设备基本是跟随Sulzer的设计,最初被建设的目的是防止焦炭在冬天冻结,就像是湿淬火。根据SovietGiprokoks的设计,这个设备在各个国家被建设,如下图1。温度大约1100°C的红色焦炭从炉体被推出来,A是流量集装箱。装载流量集装箱被运往干燥冷却站。B通过吊车提升。C通过炉料系统被卸载,D进入炼油炉膛。E然后,热的焦炭被转运到冷却炉。F在小炉里,离开冷却炉掌控系统。G焦炭流量,温度大概200°C,在输送带上。H焦炭通过主要由氮气组成的循环气体被冻结并且通过主鼓风机移动。I在锅炉里这个气体转换成热能。N产生过热蒸汽。O压力升到100bar.在进入锅炉前,在粗除尘器中气体被刷洗。J去除粗糙的焦炭灰尘颗粒来保护锅炉表面受侵蚀。离开锅炉后,气体蒸气通过细除尘器。K在优良的除尘器里被刷洗出来。图1Giprokoks的焦炭干燥冷却方法:A引入焦炭;B焦炭集装箱;C吊车;D装料系统;E炼油炉膛;F焦炭冷却室;G卸料系统;H焦炭输送带;I主鼓风机;J粗除尘器;K细除尘器;L备用的鼓风机;M给水泵;N蒸发器;O蒸汽排出口1983年的一个干燥冷却电站开始在德国被操作,如图2所示。它的主要特征是热能的1/3被直接从焦炭转换成蒸馏水,还有2/3仍然通过惰性气体保留。优势是少量的循环气体相应地有少量的鼓风机电能消耗,并且有较大量的能源重获。冷冻墙在冷却室里呈现该厂鉴定的结果。在德国,发展了一种焦炭干燥冷却和煤的再热相结合的设备。这个系统主要能源节约代替了低价能源重复利用,并且它是热力学首选的。另外,焦炭的质量方面和增加输出量是众所周知的优点,也被认证了。在焦炭电厂里这个完整的闭合系统认可对环境改善有重大意义,用一种实际完整的方法避免灰尘进入大气。Jung[13]认为使用水气体(H2+CO)作为便利的热转换流体。甚至,水气能比散布比氮气多3倍的热量,并且允许我们减少至少50%的锅炉表面。“MetalProducing”[10]是一个匿名笔记,它在下面强调了最便捷的从焦炭干淬火中能源的重获的使用方法(至少在美国):煤的干燥和加热的补充水在焦煤电站中为锅炉提供蒸汽。甚至,当焦煤设备运行时能源是可利用的,当然是在它必须的时候。另外,这些能源的质量相当地好。2.2最佳蒸汽温度和压力的研究2.2.1概述内能和内能的分析如图3内能和内能流动图解报告了一个典型的焦煤干燥冷却站,进口焦炭的温度=1050°C,出口焦炭的温度=200°C。图解是有用的,然而,仅仅能源流动显现了多种能源的有效价值。图3焓(1)和内能(2)的流动图表:A入口焦炭热焓(90.52%);B鼓风机焓值(2.15%);C焦炭和残渣通过蒸馏气体燃烧焓值(5.03%);D入口水焓值(2.3%);E蒸汽焓值(84%);F废气焓值(0.8%);G表面损失焓值(4%);H出口焦炭热焓(11.2%);A’入口焦炭内能(89.59%);B’鼓风机内能(3.68%);C’焦炭和残渣通过蒸馏气体燃烧内能(6.73%);E’蒸汽内能(44.5%);I’内能损失(55.5%)从图3附注有这样一个装置它可能从炽热的焦炭热能中恢复大约44%的有效内能,相当有大约20%的入口焦炭的有效内能。由于焦炭干淬火的相对的低效能,引起了对一切参

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论