安徽省芜湖市南陵县2024届数学八上期末调研试题含解析_第1页
安徽省芜湖市南陵县2024届数学八上期末调研试题含解析_第2页
安徽省芜湖市南陵县2024届数学八上期末调研试题含解析_第3页
安徽省芜湖市南陵县2024届数学八上期末调研试题含解析_第4页
安徽省芜湖市南陵县2024届数学八上期末调研试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省芜湖市南陵县2024届数学八上期末调研试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.化简的结果是A.+1 B. C. D.2.如下图所示,在边长为的正方形中,剪去一个边长为的小正方形(),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于、的恒等式为()A. B.C. D.3.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A. B. C. D.4.如图,△ABC≌△CDA,则下列结论错误的是()A.AC=CA B.AB=AD C.∠ACB=∠CAD D.∠B=∠D5.如图,在ΔABC中,∠BAC=120°,点D是BC上一点,BD的垂直平分线交AB于点E,将ΔACD沿AD折叠,点C恰好与点E重合,则∠B等于(

)A.15° B.20° C.25° D.30°6.下列各式中,是分式的有(),,,﹣,,,.A.5个 B.4个 C.3个 D.2个7.甲,乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后,结果如下。某同学根据上表分析,得出如下结论。班级参加人数中位数方差平均数甲55149191135乙55151110135(1)甲,乙两班学生成绩的平均水平相同。(2)乙班优秀的人数多于甲班优秀的人数。(每分钟输入汉字≧150个为优秀。)(3)甲班成绩的波动情况比乙班成绩的波动小。上述结论中正确的是()A.(1)(2)(3) B.(1)(2) C.(1)(3) D.(2)(3)8.下列标志中,可以看作是轴对称图形的是()A. B. C. D.9.下列四个结论中,正确的是()A. B.C. D.10.下列运算正确的是()A.a2+a2=a4 B.(﹣b2)3=﹣b6C.2x•2x2=2x3 D.(m﹣n)2=m2﹣n2二、填空题(每小题3分,共24分)11.下面的图表是我国数学家发明的“杨辉三角”,此图揭示了(a+b)n(n为非负整数)的展开式的项数及各项系数的有关规律.请你观察,并根据此规律写出:(a﹣b)5=__________.12.汽车开始行驶时,油箱中有油30升,如果每小时耗油4升,那么油箱中的剩余油量y(升)和工作时间x(时)之间的函数关系式是____________;13.举反例说明下面的命题是假命题,命题:若,则且,反例:__________14.在如图所示的方格中,连接格点AB、AC,则∠1+∠2=_____度.15.∠A=65º,∠B=75º,将纸片一角折叠,使点C落在△ABC外,若∠2=20º,则∠1的度数为_______.16.在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,以PB为边作等边△PBM,则线段AM的长最大值为_____.17.某学校为了丰富学生的课外活动,准备购买一批体育器材,已知类器材比类器材的单价高元,用元购买类器材与用元购买类器材的数量相同,则类器材的单价为_________________元.18.如图,∠AOB=30º,点M、N分别是射线OB、OA上的动点,点P为∠AOB内一点,且OP=8,则△PMN的周长的最小值=___________.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,正方形网格的每个小方格都是边长为1的正方形,的顶点都在格点上.(1)直接写出点的坐标;(2)试判断是不是直角三角形,并说明理由.20.(6分)因雾霾天引发的汽车尾气污染备受关注,由此汽车限号行驶也成为人们关注的焦点,限行期间为方便市民出行,某路公交车每天比原来的运行增加15车次.经调研得知,原来这路公交车平均每天共运送乘客5600人,限行期间这路公交车平均每天共运送乘客8000人,且平均每车次运送乘客与原来的数量基本相同,问限行期间这路公交车每天运行多少车次?21.(6分)如图,D是等边△ABC的AB边上的一动点(不与端点A、B重合),以CD为一边向上作等边△EDC,连接AE.(1)无论D点运动到什么位置,图中总有一对全等的三角形,请找出这一对三角形,并证明你得出的结论;(2)D点在运动过程中,直线AE与BC始终保持怎样的位置关系?并说明理由.22.(8分)某长途汽车客运公司规定旅客可以免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(千克)的一次函数,且部分对应关系如下表所示.(1)求y关于x的函数关系式;(2)求旅客最多可免费携带行李的质量;(3)当行李费为3≤y≤10时,可携带行李的质量x的取值范围是.23.(8分)五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同(1)求甲、乙两种救灾物品每件的价格各是多少元?(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?24.(8分)已知:如图,AD垂直平分BC,D为垂足,DM⊥AB,DN⊥AC,M、N分别为垂足.求证:DM=DN.25.(10分)已知:如图①所示的三角形纸片内部有一点P.任务:借助折纸在纸片上画出过点P与BC边平行的线段FG.阅读操作步骤并填空:小谢按图①~图④所示步骤进行折纸操作完成了画图任务.在小谢的折叠操作过程中,(1)第一步得到图②,方法是:过点P折叠纸片,使得点B落在BC边上,落点记为,折痕分别交原AB,BC边于点E,D,此时∠即∠=__________°;(2)第二步得到图③,参考第一步中横线上的叙述,第二步的操作指令可叙述为:_____________,并求∠EPF的度数;(3)第三步展平纸片并画出两次折痕所在的线段ED,FG得到图④.完成操作中的说理:请结合以上信息证明FG∥BC.26.(10分)已知一次函数的图象经过点.(1)若函数图象经过原点,求k,b的值(2)若点是该函数图象上的点,当时,总有,且图象不经过第三象限,求k的取值范围.(3)点在函数图象上,若,求n的取值范围.

参考答案一、选择题(每小题3分,共30分)1、D【解析】试题分析:.故选D.2、C【分析】可分别在正方形和梯形中表示出阴影部分的面积,两式联立即可得到关于a、b的恒等式.【详解】解:正方形中,S阴影=a2-b2;

梯形中,S阴影=(2a+2b)(a-b)=(a+b)(a-b);

故所得恒等式为:a2-b2=(a+b)(a-b).

故选:C.【点睛】此题主要考查的是平方差公式的几何表示,运用不同方法表示阴影部分面积是解题的关键.3、D【分析】根据分式的基本性质,x,y的值均扩大为原来的3倍,求出每个式子的结果,看结果等于原式的即是答案.【详解】根据分式的基本性质,可知若x,y的值均扩大为原来的3倍,A、,错误;B、,错误;C、,错误;D、,正确;故选D.【点睛】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.此题比较简单,但计算时一定要细心.4、B【解析】∵△ABC≌△CDA,∴AB=CD,AC=CA,BC=DA,∠ACB=∠CAD,∠B=∠D,∠DCA=∠BAC.故B选项错误.5、B【分析】由题意根据折叠的性质得出∠C=∠AED,再利用线段垂直平分线的性质得出BE=DE,进而得出∠B=∠EDB,以=以此分析并利用三角形内角和求解.【详解】解:∵将△ACD沿AD折叠,点C恰好与点E重合,∴∠C=∠AED,∵BD的垂直平分线交AB于点E,∴BE=DE,∴∠B=∠EDB,∴∠C=∠AED=∠B+∠EDB=2∠B,在△ABC中,∠B+∠C+∠BAC=∠B+2∠B+120°=180°,解得:∠B=20°,故选:B.【点睛】本题考查折叠的性质和线段垂直平分线上的点到线段两端点的距离相等的性质,熟记相关性质是解题的关键.6、B【解析】是多项式,是整式;是分式;是整式;是分式;是分式;,是整式;是分式,所以分式共有4个,故选B.7、B【分析】平均水平的判断主要分析平均数;根据中位数不同可以判断优秀人数的多少;波动大小比较方差的大小.【详解】解:从表中可知,平均字数都是135,(1)正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,(2)正确;甲班的方差大于乙班的,又说明甲班的波动情况小,所以(3)错误.综上可知(1)(2)正确.故选:B.【点睛】本题考查了平均数,中位数,方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.8、D【解析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,是中心对称图形,不符合题意;

B、不是轴对称图形,是中心对称图形,不符合题意;

C、不是轴对称图形,是中心对称图形,不符合题意;

D、是轴对称图形,符合题意.

故选D.【点睛】本题考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.9、B【分析】计算每个选项两边的数的平方即可估算出的范围.【详解】解:∵,,,∴.故选:B.【点睛】本题考查了无理数的估算,属于基本题型,掌握估算的方法是解题关键.10、B【分析】根据合并同类项法则、幂的乘方法则、单项式乘单项式法则和完全平方公式法则解答即可.【详解】A、a2+a2=2a2,故本选项错误;B、(﹣b2)3=﹣b6,故本选项正确;C、2x•2x2=4x3,故本选项错误;D、(m﹣n)2=m2﹣2mn+n2,故本选项错误.故选:B.【点睛】本题考查了整式的运算,合并同类项、幂的乘方、单项式乘单项式和完全平方公式,熟练掌握运算法则是解题的关键.二、填空题(每小题3分,共24分)11、a5﹣5a4b+10a3b2﹣10a2b3+5ab4﹣b5【分析】根据“杨辉三角”,寻找解题的规律:(a+b)n的展开式共有(n+1)项,各项系数依次为2n.根据规律,(a-b)5的展开式共有6项,各项系数依次为1,-5,10,-10,5,-1,系数和为27,

故(a-b)5=a5﹣5a4b+10a3b2﹣10a2b3+5ab4﹣b5.故答案为a5﹣5a4b+10a3b2﹣10a2b3+5ab4﹣b5.

【详解】请在此输入详解!12、y=30-4x【解析】试题解析:∵每小时耗油4升,

∵工作x小时内耗油量为4x,

∵油箱中有油30升,

∴剩余油量y=30-4x.13、,,则且,【分析】根据要说明一个命题是假命题可以举个反例来说明,且反例要求符合原命题的条件,但结论却与原命题不一致进行分析即可.【详解】解:因为当,时,原条件ab>0仍然成立,所以反例为:,,则且,.故答案为:,,则且,.【点睛】本题考查命题相关,熟练掌握命题的定义即判断一件事情的语句,叫做命题以及判断一个命题是假命题,只需举出一个反例即可.14、1【分析】根据勾股定理分别求出AD2、DE2、AE2,根据勾股定理的逆定理得到△ADE为等腰直角三角形,得到∠DAE=1°,结合图形计算,得到答案.【详解】解:如图,AD与AB关于AG对称,AE与AC关于AF对称,连接DE,由勾股定理得,AD2=22+12=5,DE2=22+12=5,AE2=32+12=10,则AD2+DE2=AE2,∴△ADE为等腰直角三角形,∴∠DAE=1°,∴∠GAD+∠EAF=90°﹣1°=1°,∴∠1+∠2=1°;故答案为:1.【点睛】本题考查的是勾股定理、勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.15、100°【解析】先根据三角形的内角和定理可出∠C=180°-∠A-∠B=180°-65°-75°=40°;再根据折叠的性质得到∠C′=∠C=40°,再利用三角形的内角和定理以及外角性质得∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,即可得到∠3+∠4=80°,然后利用平角的定义即可求出∠1.【详解】如图,∵∠A=65°,∠B=75°,

∴∠C=180°-∠A-∠B=180°-65°-75°=40°;

又∵将三角形纸片的一角折叠,使点C落在△ABC外,

∴∠C′=∠C=40°,

而∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,∠2=20°,

∴∠3+20°+∠4+40°+40°=180°,

∴∠3+∠4=80°,

∴∠1=180°-80°=100°.

故答案是:100°.【点睛】考查了折叠前后两图形全等,即对应角相等,对应线段相等.也考查了三角形的内角和定理以及外角性质.16、1.【详解】如图,当点P在第一象限内时,将三角形APM绕着P点旋转60°,得DPB,连接AD,则DP=AP,∠APD=60°,AM=BD,ADP是等边三角形,所以BDAD+AB可得,当D在BA延长线上时,BD最长,点D与O重合,又点A的坐标为(2,0),点B的坐标为(1,0),AB=3,AD=AO=2,BD=AD+AB=1=AM,即线段AM的长最大值为1;当点P在第四象限内时,同理可得线段AM的长最大值为1.所以AM最大值是1.故答案为1.17、1【分析】设B类器材的单价为x元,则A类器材的单价是(x+10)元,根据“用300元购买A类器材与用10元购买B类器材的数量相同”列出方程解答即可.【详解】设B类器材的单价为x元,则A类器材的单价是(x+10)元,由题意得:解得:x=1.经检验:x=1是原方程的解.故答案为:1.【点睛】本题考查了分式方程的实际运用,找出题目蕴含的数量关系是解答本题的关键.18、1【详解】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OP、OC、OD、PM、PN.∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=1cm,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=1.∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=1.故答案为1.三、解答题(共66分)19、(1)A(-1,5),B(-5,2),C(-3,1);(2)△ABC是直角三角形,理由见解析.【分析】(1)根据网格中三角形所处位置即可得出坐标;(2)利用勾股定理逆定理进行判定即可.【详解】(1)根据题意,得A(-1,5),B(-5,2),C(-3,1);(2)△ABC是直角三角形.证明:∵AB=,BC=,AC=,∴由勾股定理的逆定理可知,△ABC是直角三角形,∠ACB=90°.【点睛】此题主要考查平面直角坐标系中网格三角形坐标的求解以及勾股定理逆定理的运用,熟练掌握,即可解题.20、限行期间这路公交车每天运行50车次.【分析】设限行期间这路公交车每天运行x车次,则原来运行车次,根据“平均每车次运送乘客与原来的数量基本相同”列出分式方程,求解即可.【详解】解:设限行期间这路公交车每天运行x车次,则原来运行车次,根据题意可得:,解得:,经检验得是该分式方程的解,答:限行期间这路公交车每天运行50车次.【点睛】本题考查分式方程的实际应用,根据题意列出分式方程并求解是解题的关键,需要注意的是求出分式方程的解之后一定要验根.21、(1)△BDC≌△AEC,理由见解析;(2)AE//BC,理由见解析【分析】(1)根据等边三角形的性质可得∠BCA=∠DCE=60°,BC=AC,DC=EC,然后根据等式的基本性质可得∠BCD=∠ACE,再利用SAS即可证出结论;(2)根据全等三角形的性质和等边三角形的性质可得∠DBC=∠EAC=60°,∠ACB=60°,然后利用平行线的判定即可得出结论.【详解】(1)△BDC≌△AEC理由如下:∵△ABC和△EDC都是等边三角形,∴∠BCA=∠DCE=60°,BC=AC,DC=EC.∴∠BCA-∠ACD=∠DCE-∠ACD∴∠BCD=∠ACE在△BDC和△AEC中∴△BDC≌△AEC(2)AE//BC理由如下:∵△BDC≌△AEC,△ABC是等边三角形∴∠DBC=∠EAC=60°,∠ACB=60°∴∠EAC=∠ACB故AE//BC【点睛】此题考查的是全等三角形判定及性质、等边三角形的性质和平行线的判定,掌握全等三角形判定及性质、等边三角形的性质和平行线的判定是解决此题的关键.22、(1)y=x-2;(2)10千克;(3)25≤x≤1.【分析】(1)利用待定系数法求一次函数解析式即可解答;(2)令y=0时求出x的值即可;(3)分别求出y=3时,x的值和y=10时,x的值,再利用一次函数的增减性即可求出x的取值范围.【详解】解:(1)∵y是

x的一次函数,

∴设y=kx+b(k≠0)

将x=15,y=1;x=20,y=2分别代入y=kx+b,得,

解得:,

∴函数表达式为y=x-2,

(2)将y=0代入y=x-2,得0=x-2,

∴x=10,答:旅客最多可免费携带行李的质量为10千克.

(3)把y=3代入解析式,可得:x=25,

把y=10代入解析式,可得:x=1,∵>0∴y随x的增大而增大

所以可携带行李的质量x(kg)的取值范围是25≤x≤1,

故答案为:25≤x≤1.【点睛】本题考查了一次函数的应用,掌握利用了待定系数法求一次函数解析式和已知函数值的取值范围求自变量的取值范围是解决此题的关键.23、(1)甲、乙两种救灾物品每件的价格各是70元、1元;(2)需筹集资金125000元.【分析】(1)设每件乙种物品的价格是x元,则每件甲种物品的价格是(x+10)元,根据“用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同”列出方程,求解即可;(2)设甲种物品件数为m件,则乙种物品件数为3m件,根据”该爱心组织按照此需求的比例购买这2000件物品”列出方程,求解即可.【详解】(1)设每件乙种物品的价格是x元,则每件甲种物品的价格是(x+10)元,根据题意得,,解得:x=1.经检验,x=1是原方程的解.答:甲、乙两种救灾物品每件的价格各是70元、1元;(2)设甲种物品件数为m件,则乙种物品件数为3m件,根据题意得,m+3m=2000,解得m=500,即甲种物品件数为500件,则乙种物品件数为1500件,此时需筹集资金:70×500+1×1500=125000(元).答:若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金125000元.24、见解析.【分析】根据垂直平分线的性质得到AC=AB,再利用等腰三角形的性质得到AD是角平分线,最后利用角平分线的性质即可得到结论.【详解】证明:∵AD垂直平分BC,∴AC=AB,即是等腰三角形,∴AD平分∠BAC,∵DM⊥AB,DN⊥AC,∴DM=DN.【点睛】本题考查了垂直平分线的性质,等腰三角形的判定与性质,角平分线的性质,熟练掌握各性质判定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论