2014-2-11圆锥曲线知识点归纳_第1页
2014-2-11圆锥曲线知识点归纳_第2页
2014-2-11圆锥曲线知识点归纳_第3页
2014-2-11圆锥曲线知识点归纳_第4页
2014-2-11圆锥曲线知识点归纳_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGE2-11圆锥曲线知识点归纳椭圆的定义、性质及标准方程1.椭圆的定义:⑴第一定义:平面内与两个定点的距离之和等于常数(大于)的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。⑵第二定义:动点到定点的距离和它到定直线的距离之比等于常数,则动点的轨迹叫做椭圆。定点是椭圆的焦点,定直线叫做椭圆的准线,常数叫做椭圆的离心率。说明:①若常数等于,则动点轨迹是线段。②若常数小于,则动点轨迹不存在。2.椭圆的标准方程、图形及几何性质:标准方程中心在原点,焦点在轴上中心在原点,焦点在轴上图形范围顶点对称轴轴、轴;长轴长,短轴长;焦点在长轴上轴、轴;长轴长,短轴长;焦点在长轴上焦点焦距离心率准线参数方程与普通方程的参数方程为的参数方程为3.焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。焦半径公式:椭圆焦点在轴上时,设分别是椭圆的左、右焦点,是椭圆上任一点,则,。推导过程:由第二定义得(为点到左准线的距离),则;同理得。简记为:左“+”右“-”。由此可见,过焦点的弦的弦长是一个仅与它的中点的横坐标有关的数。若焦点在轴上,则为。有时为了运算方便,设。判定直线与椭圆位置关系的非常规方法定理1:设、分别是椭圆的左、右焦点,点P是直角坐标平面中的任意一点,则(1)点P在椭圆上.(2)点P在椭圆外.(3)点P在椭圆内.证明:(1)由椭圆的定义直接可得这个结论.(2)1)当点P在椭圆外时:如图,连结交椭圆于点M,则>即成立.即:点P在椭圆外(3)1)当点P在椭圆内时:如图,连结并延长交椭圆于点M,则<即成立.即:点P在椭圆内(2)2)当时:若点P在椭圆上,则有得矛盾若点P在椭圆内,则有得矛盾∴点P在椭圆外.即点P在椭圆外.(3)2)同理可得点P在椭圆内.定理2:设直线上的动点P到椭圆两焦点、的距离和的最小值为,则(1)直线和椭圆C相切;(2)直线和椭圆C相离;(1)直线和椭圆C相交;证明:(1)直线和椭圆C相切直线和椭圆C有且仅有一个公共点 直线上有且仅有一个点在椭圆上,而其它点全在椭圆外 的最小值为(2)直线和椭圆C相离直线上的所有点都在椭圆C的外部恒成立 (3)直线和椭圆C相交直线上至少存在一点P在椭圆C的内部直线上至少存在一点P使成立注:容易验证对于焦点在轴上的椭圆,上述结论也成立.定理3:已知:直线椭圆,则(1);(2);(3)。证明:作坐标变换:则在新坐标系中椭圆C变成曲线的方程为:(已化为单位圆),直线l变成直线的方程为,易见坐标变换前后直线和曲线的位置关系(公共点的个数)保持不变;在中,由于圆心到直线的距离∴和椭圆C相交和单位圆相交同理:和椭圆C相切//////////和椭圆C相离例1已知:椭圆C以两坐标轴为对称轴,焦点在x轴上,且与两直线均相切,求:椭圆C的方程。解:设椭圆的方程为:∵椭圆和直线相切∴由定理3可知:又∵椭圆和直线相切∴由解得∴椭圆的方程为:双曲线的定义、方程和性质知识要点:定义(1)第一定义:平面内到两定点F1、F2的距离之差的绝对值等于定长2a(小于|F1F2|说明:①||PF1|-|PF2||=2a(2a<|F1F2|若2a=|F1F2|,轨迹是以F1、F2为端点的射线;2a>|F1F2②设M是双曲线上任意一点,若M点在双曲线右边一支上,则|MF1|>|MF2|,|MF1|-|MF2|=2a;若M在双曲线的左支上,则|MF1|<|MF2|,|MF1|-|MF2|=-2a,故|MF1|-|MF2|=±2a,这是与椭圆不同的地方。(2)第二定义:平面内动点到定点F的距离与到定直线L的距离之比是常数e(e>1)的点的轨迹叫双曲线,定点叫焦点,定直线L叫相应的准线。双曲线的方程及几何性质标准方程图形焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)顶点A1(a,0),A2(-a,0)A1(0,a),A2(0,-a)对称轴实轴2a,虚轴2b,实轴在x轴上,c2=a2+b2实轴2a,虚轴2b,实轴在y轴上,c2=a2+b2离心率准线方程准线间距离为准线间距离为渐近线方程几个概念等轴双曲线:实、虚轴相等的双曲线。等轴双曲线的渐近线为y=±x,离心率为。共轴双曲线:以已知双曲线的实轴为虚轴,虚轴为实轴的双曲线叫原双曲线的共轴双曲线,例:的共轴双曲线是。双曲线及其共轴双曲线有共同的渐近线。但有共同的渐近线的两双曲线,不一定是共轴双曲线;②双曲线和它的共轴双曲线的四个焦点在同一个圆周上。抛物线标准方程与几何性质一、抛物线定义的理解平面内与一个定点和一条定直线的距离相等的点的轨迹叫做抛物线,定点为抛物线的焦点,定直线为抛物线的准线。注:=1\*GB3①定义可归结为“一动三定”:一个动点设为;一定点(即焦点);一定直线(即准线);一定值1(即动点到定点的距离与它到定直线的距离之比1)=2\*GB3②定义中的隐含条件:焦点不在准线上。若在上,抛物线退化为过且垂直于的一条直线=3\*GB3③圆锥曲线的统一定义:平面内与一定点和定直线的距离之比为常数的点的轨迹,当时,表示椭圆;当时,表示双曲线;当时,表示抛物线。=4\*GB3④抛物线定义建立了抛物线上的点、焦点、准线三者之间的距离关系,在解题中常将抛物线上的动点到焦点距离(称焦半径)与动点到准线距离互化,与抛物线的定义联系起来,通过这种转化使问题简单化。二、抛物线标准方程1.抛物线标准方程建系特点:以抛物线的顶点为坐标原点,对称轴为一条坐标轴建立直角坐标系,这样使标准方程不仅具有对称性,而且曲线过原点,方程不含常数项,形式更为简单,便于应用。2.四种标准方程的联系与区别:由于选取坐标系时,该坐标轴有四种不同的方向,因此抛物线的标准方程有四种不同的形式。抛物线标准方程的四种形式为:,,其中:=1\*GB3①参数的几何意义:焦参数是焦点到准线的距离,所以恒为正值;值越大,张口越大;等于焦点到抛物线顶点的距离。=2\*GB3②标准方程的特点:方程的左边是某变量的平方项,右边是另一变量的一次项,方程右边一次项的变量与焦点所在坐标轴的名称相同,一次项系数的符号决定抛物线的开口方向,即对称轴为轴时,方程中的一次项变量就是,若的一次项前符号为正,则开口向右,若的一次项前符号为负,则开口向左;若对称轴为轴时,方程中的一次项变量就是,当的一次项前符号为正,则开口向上,若的一次项前符号为负,则开口向下。三、求抛物线标准方程求抛物线方程时,要依据题设条件,弄清抛物线的对称轴和开口方向,正确地选择抛物线标准方程.=1\*GB3①待定系数法:因抛物线标准方程有四种形式,若能确定抛物线的形式,需一个条件就能解出待定系数,因此要做到“先定位,再定值”。注:当求顶点在原点,对称轴为坐标轴的抛物线时,若不知开口方向,可设为或,这样可避免讨论。=2\*GB3②抛物线轨迹法:若由已知得抛物线是标准形式,可直接设其标准式;若不确定是否是标准式,由已知条件可知曲线的动点的规律,一般用轨迹法求之。四、抛物线的简单几何性质方程设抛物线性质焦点范围对称性顶点离心率准线通径关于轴对称原点注:=1\*GB3①焦点的非零坐标是一次项系数的;=2\*GB3②对于不同形式的抛物线,位置不同,其性质也有所不同,应弄清它们的异同点,数形结合,掌握方程与有关特征量,有关性质间的对应关系,从整体上认识抛物线及其性质。五、直线与抛物线有关问题1.直线与抛物线的位置关系的判断:直线与抛物线方程联立方程组,消去或化得形如(*)的式子:=1\*GB3①当时,(*)式方程只有一解,即直线与抛物线只有一个交点,此时直线与抛物线不是相切,而是与抛物线对称轴平行或重合;=2\*GB3②当时,若△>0(*)式方程有两组不同的实数解直线与抛物线相交;若△=0(*)式方程有两组相同的实数解直线与抛物线相切;若△<0(*)式方程无实数解直线与抛物线相离.

2.直线与抛物线相交的弦长问题=1\*GB3①弦长公式:设直线交抛物线于,则或.=2\*GB3②若直线与抛物线相交所得弦为焦点弦时,借助于焦半径公式处理:抛物线上一点的焦半径长是,抛物线上一点的焦半径长是六、抛物线焦点弦的几个常用结论设为过抛物线焦点的弦,设,直线的倾斜角为,则①;②;③以为直径的圆与准线相切;④弦两端点与顶点所成三角形的面积;⑤;=6\*GB3⑥焦点对、在准线上射影

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论