专题11.8“8字”模型经典问题特殊训练(重难点培优)-【拔尖特训】2023-2024学年八年级数学上册尖子生培优必刷题(解析版)【人教版】_第1页
专题11.8“8字”模型经典问题特殊训练(重难点培优)-【拔尖特训】2023-2024学年八年级数学上册尖子生培优必刷题(解析版)【人教版】_第2页
专题11.8“8字”模型经典问题特殊训练(重难点培优)-【拔尖特训】2023-2024学年八年级数学上册尖子生培优必刷题(解析版)【人教版】_第3页
专题11.8“8字”模型经典问题特殊训练(重难点培优)-【拔尖特训】2023-2024学年八年级数学上册尖子生培优必刷题(解析版)【人教版】_第4页
专题11.8“8字”模型经典问题特殊训练(重难点培优)-【拔尖特训】2023-2024学年八年级数学上册尖子生培优必刷题(解析版)【人教版】_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

【拔尖特训】2023-2024学年八年级数学上册尖子生培优必刷题(人教版)专题11.8“8字”模型经典问题特殊训练(重难点培优)班级:___________________姓名:_________________得分:_______________一.选择题(共6小题)1.如图,五角星的五个角之和,即:∠A+∠B+∠C+∠D+∠E=()A.180° B.90° C.270° D.240°【答案】A【分析】连接CD,由∠BOE=∠COD得:∠B+∠E=∠OCD+∠ODC,再由三角形的内角和定理,即可得出五角星的五个角之和.【解析】解:连接CD,设BD与CE交于点O,由∠BOE=∠COD得:∠B+∠E=∠OCD+∠ODC,在△ACD中,∠A+∠ACD+∠ADC=180°,即∠A+∠ACE+∠OCD+∠ODC+∠ADB=180°,∴∠A+∠ACE+∠B+∠E+ADB=180°,即五角星的五个内角之和为180°.故选:A.【点评】本题考查的是三角形内角和定理,根据题意作出辅助线,利用三角形的内角和定理进行推理是解答此题的关键.2.如图所示,∠α的度数是()A.10° B.20° C.30° D.40°【答案】A【分析】根据对顶角的性质以及三角形的内角和定理即可求出答案.【解析】解:∵∠A+∠B+∠AOB=∠C+∠D+∠COD,∠AOB=∠COD,∴∠A+∠B=∠C+∠D∴30°+20°=40°+α,∴α=10°故选:A.【点评】本题考查三角形的内角和定理,解题的关键是熟练运用三角形内角和定理,本题属于基础题型.3.如图,已知AB⊥BD,AC⊥CD,∠A=40°,则∠D的度数为()A.40° B.50° C.60° D.70°【答案】A【分析】根据直角三角形的性质求出∠AEB的度数,根据对顶角相等求出∠DEC,根据直角三角形的两个锐角互余计算即可.【解析】解:∵AB⊥BD,∠A=40°,∴∠AEB=50°,∴∠DEC=50°,又AC⊥CD,∴∠D=40°,故选:A.【点评】本题考查的是直角三角形的性质,掌握直角三角形的两个锐角互余是解题的关键.4.如图所示,已知∠1=60°,∠A+∠B+∠C+∠D+∠E+∠F=()A.180° B.360° C.240° D.200°【答案】C【分析】根据“三角形的外角等于与它不相邻的两个内角和”可知∠B+∠D+∠C+∠E=180°﹣60°=120°,根据三角形内角和可知∠A+∠F=120°,∴∠A+∠B+∠C+∠D+∠E+∠F=120°+120°=240°.【解析】解:∵∠3=∠B+∠D,∠2=∠C+∠E,∠2+∠3=180°﹣60°=120°,∴∠B+∠D+∠C+∠E=180°﹣60°=120°,∵∠A+∠F=120°,∴∠A+∠B+∠C+∠D+∠E+∠F=120°+120°=240°.故选:C.【点评】主要考查了三角形的内角和外角之间的关系.(1)三角形的外角等于与它不相邻的两个内角和.(2)三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.5.如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠K的度数为()A.720° B.900° C.1080° D.1260°【答案】C【分析】连KF,GI,根据n边形的内角和定理得到7边形ABCDEFK的内角和=(7﹣2)×180°=900°,则∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠1+∠2)=900°,由三角形内角和定理可得到∠1+∠2=∠3+∠4,∠5+∠6+∠H=180°,则∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠3+∠4)+∠5+∠6+∠H=900°+180°,即可得到∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠K的度数.【解析】解:连KF,GI,如图,∵7边形ABCDEFK的内角和=(7﹣2)×180°=900°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠K=900°﹣(∠1+∠2),即∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠1+∠2)=900°,∵∠1+∠2=∠3+∠4,∠5+∠6+∠H=180°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠3+∠4)=900°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠3+∠4)+∠5+∠6+∠H=900°+180°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠K=1080°.故选:C.【点评】本题考查了n边形的内角和定理:n边形的内角和为(n﹣2)×180°(n≥3的整数).6.如图,BP平分∠ABC交CD于点F,DP平分∠ADC交AB于点E,若∠A=45°,∠P=40°,则∠C的度数为()A.30° B.35° C.40° D.45°【答案】B【分析】根据三角形内角和定理,得∠A+∠ADG=∠C+∠GBC,∠A+∠ADE=∠P+∠PBE.根据角平分线的定义,得到∠GBC=2∠PBE,∠ADG=2∠ADE,进而推断出∠A+∠C=2∠P,从而解决此题.【解析】解:∵∠A+∠ADG+∠AGD=180°,∠ABC+∠C+∠BGC=180°,∴∠A+∠ADG+∠AGD=∠ABC+∠C+∠BGC.又∵∠AGD=∠BGC,∴∠A+∠ADG=∠C+∠GBC.∴∠A﹣∠C=∠GBC﹣∠ADG.同理可得,∠A+∠ADE=∠P+∠PBE.∴∠A﹣∠P=∠PBE﹣∠ADE.∵BP平分∠ABC交CD于点F,DP平分∠ADC交AB于点E,∴∠GBC=2∠PBE,∠ADG=2∠ADE.∴∠A﹣∠C=2(∠A﹣∠P).∴∠A+∠C=2∠P.又∵∠A=45°,∠P=40°,∴∠C=35°.故选:B.【点评】本题主要考查三角形内角和定理以及角平分线的性质,熟练掌握三角形内角和定理以及角平分线的性质是解决本题的关键.二.填空题(共12小题)7.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为360°【答案】见试题解答内容【分析】根据三角形外角的性质和四边形内角和等于360°可得∠A+∠B+∠C+∠D+∠E+∠F的度数.【解析】解:如图,∵∠1=∠2+∠F=∠B+∠E+∠F,∠1+∠A+∠C+∠D=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°,故答案为:360°.【点评】此题考查三角形的内角和,角的和与差,掌握三角形的内角和定理是解决问题的关键.8.如图,∠A+∠B+∠C+∠D+∠E的度数是180°.【答案】见试题解答内容【分析】本题运用三角形的一个外角等于和它不相邻的两个内角和,将已知角转化在同一个三角形中,再根据三角形内角和定理求解.【解析】解:如图,∵∠1=∠B+∠E,∠2=∠1+∠C,∠A+∠2+∠D=180°,∴∠A+∠B+∠C+∠D+∠E=180°.故答案为:180°.【点评】本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系.9.如图所示,∠A+∠B+∠C+∠D+∠E+∠F=360度.【答案】360.【分析】根据三角形外角的性质得∠B+∠C=∠1,∠A+∠F=∠2,则这几个角是一个四边形的四个内角,故∠A+∠B+∠C+∠D+∠E+∠F=360°.【解析】解:∵∠B+∠C=∠1,∠A+∠F=∠2,∴∠A+∠B+∠C+∠D+∠E+∠F=∠1+∠2+∠E+∠D=360°.故答案为:360.【点评】此题主要考查了三角形的外角以及四边形的内角和,正确掌握三角形外角的性质是解题关键.10.如图,则∠A+∠B+∠C+∠D+∠E+∠F的度数为360°.【答案】见试题解答内容【分析】连接AD,利用三角形内角和定理可得∠B+∠C=∠1+∠2,然后利用四边形内角和为360°可得答案.【解析】解:连接AD,在△AOD和△BOC中,∵∠AOD=∠BOC,∴∠B+∠C=∠1+∠2,∴∠B+∠C+∠BAF+∠EDF=∠1+∠2+∠BAF+∠EDF=∠EDA+∠FAD,∵∠EDA+∠FAD+∠E+∠F=360°,∴∠BAF+∠EDF+∠B+∠C+∠E+∠F=360°,故答案为:360°.【点评】此题主要考查了多边形的内角与外角,关键是掌握四边形内角和为360°.11.如图,∠A+∠B+∠C+∠D+∠E=180°.【答案】见试题解答内容【分析】如图根据三角形的外角的性质,三角形内角和定理可知∠1=∠B+∠2,∠2=∠D+∠E,∠A+∠1+∠C=180°,由此不难证明结论.【解析】解:如图,∵∠1=∠B+∠2,∠2=∠D+∠E,∠A+∠1+∠C=180°,∴∠A+∠B+∠D+∠E+∠C=180°,故答案为:180.【点评】本题考查三角形的外角的性质、三角形内角和定理等知识,解题的关键是灵活应用所学知识解决问题,属于基础题,中考常考题型.12.如图,则∠A+∠B+∠C+∠D+∠E+∠F的度数为360°.【答案】见试题解答内容【分析】根据三角形的外角性质和四边形内角和等于360°可得∠A+∠B+∠C+∠D+∠E+∠F的度数.【解析】解:如图,∵∠1=∠A+∠F,∠2=∠1+∠E,∴∠A+∠B+∠C+∠D+∠E+∠F=∠B+∠C+∠D+∠2=360°.故答案为:360°.【点评】此题考查三角形的外角性质,四边形内角和,掌握三角形的外角性质和四边形内角和等于360°是解决问题的关键.13.如图所示,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H度数为360°.【答案】见试题解答内容【分析】根据三角形的外角等于不相邻的两个内角的和,以及多边形的内角和即可求解.【解析】解:∵∠1=∠A+∠B,∠2=∠C+∠D,∠3=∠E+∠F,∠4=∠G+∠H,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=∠1+∠2+∠3+∠4,又∵∠1+∠2+∠3+∠4=360°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=360°.故答案为:360°.【点评】本题考查了三角形的外角的性质以及多边形的外角和定理,正确转化为多边形的外角和是关键.14.如图,∠A+∠B+∠C+∠D+∠E=180°.【答案】180.【分析】如图根据三角形的外角的性质,三角形内角和定理可知:∠DNC+∠D+∠C=180°,由三角形外角性质可知:∠AMB=∠A+∠E,∠DNC=∠B+∠AMB,根据三个等式即可求解.【解析】解:如图,设线段BD,BE分别与线段AC交于点N,M.∵∠AMB=∠A+∠E,∠DNC=∠B+∠AMB,∠DNC+∠D+∠C=180°,∴∠A+∠B+∠D+∠E+∠C=180°,故答案为:180.【点评】此题考查了多边形的内角与外角,熟记三角形的外角定理及内角和是解题的关键.15.如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G=540°.【答案】见试题解答内容【分析】利用三角形外角性质得到∠1=∠B+∠F+∠C,然后利用五边形的内角和求∠A+∠B+∠C+∠F+∠D+∠E+∠G的度数.【解析】解:如图,∵∠1=∠B+∠2,而∠2=∠F+∠C,∴∠1=∠B+∠F+∠C,∵∠A+∠1+∠D+∠E+∠G=∠A+∠B+∠C+∠F+∠D+∠E+∠G=(5﹣2)×180°=540°.故答案为540.【点评】本题考查了多边形内角与外角:多边形内角和定理:(n﹣2)•180(n≥3)且n为整数),此公式推导的基本方法是从n边形的一个顶点出发引出(n﹣3)条对角线,将n边形分割为(n﹣2)个三角形,这(n﹣2)个三角形的所有内角之和正好是n边形的内角和.也考查了三角形外角性质.16.如图,则∠A+∠B+∠C+∠D+∠E+∠F+∠H=540度.【答案】540.【分析】连接CH,根据三角形的内角和定理可得∠A+∠B=∠1+∠2,再根据多边形的内角和公式(n﹣2)•180°列式计算即可得解.【解析】解:如图,连接CH,由三角形的内角和定理得,∠A+∠B=∠1+∠2,由多边形的内角和公式得,∠1+∠2+∠C+∠D+∠E+∠F+∠H=(5﹣2)•180°=540°,所以,∠A+∠B+∠C+∠D+∠E+∠F+∠H=540°.故答案为:540.【点评】本题考查了多边形的内角与外角,三角形的内角和定理,熟记定理与公式并作辅助线构造出三角形与多边形是解题的关键.17.如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G=540°.【答案】540°.【分析】连接CF,根据三角形的内角和定理及对顶角的性质可得∠D+∠E=∠OCF+∠OFC,再根据多边形的内角和定理可求解.【解析】解:连接CF,∵∠D+∠E+∠DOE=∠OCF+∠OFC+∠COF=180°,∠DOE=∠COF,∴∠D+∠E=∠OCF+∠OFC,∵∠A+∠B+∠BCF+∠CFG+∠G=(5﹣2)×180°=540°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=540°.【点评】本题主要考查多边形的内角和,对顶角的性质,掌握多边形内角和定理是解题的关键.18.如图所示,AB、CD相交于点O,若BE平分∠ABD交CD于F,CE平分∠ACD交AB于G,∠A=45°,∠BEC=40°,则∠D的度数为35°.【答案】见试题解答内容【分析】先根据角平分线定义得到∠1=∠2,∠3=∠4,再利用三角形内角和定理和对顶角相等得到∠1+∠D=∠4+∠E①,∠1+∠2+∠D=∠3+∠4+∠A,即2∠1+∠D=2∠4+∠A②,接着利用①×2﹣②得2∠E=(∠D+∠A),由此即可解决问题.【解析】解:如图,∵BE平分∠DBA交DC于F,CE平分∠DCA交AB于G,∴∠1=∠2,∠3=∠4,∵∠1+∠D=∠4+∠E①,∠1+∠2+∠D=∠3+∠4+∠A,即2∠1+∠D=2∠4+∠A②,由①×2﹣②得∠D=2∠E﹣∠A,∵∠A=45°,∠BEC=40°,∴∠D=35°,故答案为35°.【点评】本题考查了三角形内角和定理:三角形内角和是180°.解答的关键是找准相关的三角形,然后利用三角形内角和定理建立等量关系.三.解答题(共6小题)19.如图,已知∠A=50°,∠D=40°(1)求∠1度数;(2)求∠A+∠B+∠C+∠D+∠E的度数.【答案】见试题解答内容【分析】(1)根据三角形的外角的性质即可得到结论;(2)根据三角形的一个外角等于与它不相邻的两个内角的和可得∠1=∠A+∠C,∠2=∠B+∠D,然后利用三角形的内角和定理列式计算即可得解.【解析】解:(1)∠1=∠A+∠D=90°;(2)∵∠1=∠A+∠D,∠2=∠B+∠E,∠1+∠2+∠C=180°,∴∠A+∠B+∠C+∠D+∠E=180°.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.20.已知,如图,线段AD、CB相交于点O,连结AB、CD,∠DAB和∠BCD的平分线AP和CP相交于点P.试问∠P与∠D、∠B之间存在着怎样的数量关系,请说明理由.【答案】2∠P=∠B+∠D.【分析】根据“8字形”可得∠OAB+∠B=∠OCD+∠D,∠1+∠P=∠2+∠D,由角平分线的定义可得∠OAB=2∠1,∠OCD=2∠2,整理可得结论.【解析】解:2∠P=∠B+∠D,理由如下:如图,在△AOB和△COD中,∵∠AOB=∠COD,∴∠OAB+∠B=∠OCD+∠D,在△AEP和△CED中,∵∠AEP=∠CED,∴∠1+∠P=∠2+∠D,∵AP、CP分别是∠DAB和∠BCD的角平分线,∴∠OAB=2∠1,∠OCD=2∠2,∴2∠P﹣∠B=2∠D﹣∠D,整理得,2∠P=∠B+∠D.【点评】本题考查了三角形内角和定理,角平分线的定义,多边形的内角和定理,对顶角相等的性质,整体思想的利用是解题的关键.21.图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:∠A+∠D=∠C+∠B;(2)仔细观察,在图2中“8字形”的个数:6个;(3)图2中,当∠D=50度,∠B=40度时,求∠P的度数.(4)图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系.(直接写出结果,不必证明).【答案】见试题解答内容【分析】(1)根据三角形内角和定理即可得出∠A+∠D=∠C+∠B;(2)根据“8字形”的定义,仔细观察图形即可得出“8字形”共有6个;(3)先根据“8字形”中的角的规律,可得∠DAP+∠D=∠P+∠DCP①,∠PCB+∠B=∠PAB+∠P②,再根据角平分线的定义,得出∠DAP=∠PAB,∠DCP=∠PCB,将①+②,可得2∠P=∠D+∠B,进而求出∠P的度数;(4)同(3),根据“8字形”中的角的规律及角平分线的定义,即可得出2∠P=∠D+∠B.【解析】解:(1)∵∠A+∠D+∠AOD=∠C+∠B+∠BOC=180°,∠AOD=∠BOC,∴∠A+∠D=∠C+∠B,故答案为:∠A+∠D=∠C+∠B;(2)①线段AB、CD相交于点O,形成“8字形”;②线段AN、CM相交于点O,形成“8字形”;③线段AB、CP相交于点N,形成“8字形”;④线段AB、CM相交于点O,形成“8字形”;⑤线段AP、CD相交于点M,形成“8字形”;⑥线段AN、CD相交于点O,形成“8字形”;故“8字形”共有6个,故答案为:6;(3)∠DAP+∠D=∠P+∠DCP,①∠PCB+∠B=∠PAB+∠P,②∵∠DAB和∠BCD的平分线AP和CP相交于点P,∴∠DAP=∠PAB,∠DCP=∠PCB,①+②得:∠DAP+∠D+∠PCB+∠B=∠P+∠DCP+∠PAB+∠P,即2∠P=∠D+∠B,又∵∠D=50度,∠B=40度,∴2∠P=50°+40°,∴∠P=45°;(4)关系:2∠P=∠D+∠B.∠D+∠1=∠P+∠3①∠B+∠4=∠P+∠2②①+②得:∠D+∠1+∠4+∠B=∠P+∠3+∠2+∠P,∵∠DAB和∠DCB的平分线AP和CP相交于点P,∴∠1=∠2,∠3=∠4∴2∠P=∠D+∠B.【点评】本题主要考查了三角形内角和定理,角平分线的定义及阅读理解与知识的迁移能力.(1)中根据三角形内角和定理得出“8字形”中的角的规律;(2)是考查学生的观察理解能力,需从复杂的图形中辨认出“8字形”;(3)(4)直接运用“8字形”中的角的规律解题.22.平面内的两条直线有相交和平行两种位置关系(1)已知AB平行于CD,如a图,当点P在AB、CD外部时,∠BPD+∠D=∠B即∠BPD=∠B﹣∠D,为什么?请说明理由.如b图,将点P移动到AB、CD内部,以上结论是否仍然成立?若不成立,则∠BPD、∠B、∠D之间有何数量关系?请说明结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.【答案】见试题解答内容【分析】(1)①利用平行线的性质和三角形的外角即可;②利用平行线的特点作出平行线,再利用平行线的性质即可;(2)利用三角形的外角等于与它不相邻的两内角的和即可;(3)利用三角形的外角的性质把角转化到四边形CDHM中,用四边形的内角和即可.【解析】解:(1)①∵AB∥CD,∴∠B=∠COP,∵∠COP=∠BPD+∠D,∴∠B=∠BPD+∠D,即:∠BPD=∠B﹣∠D,②不成立,结论:∠BPD=∠B+∠D,理由:如图b,过点P作PG∥AB,∴∠B=∠BPG,∵PG∥AB,CD∥AB,∴PG∥CD,∴∠DPG=∠D,∴∠BPD=∠BPG+∠DPG=∠B+∠D;(2)结论:∠DPQ=∠B+∠BQD+∠D,理由:如图c,连接QP并延长,∵∠BP∠G是△BPQ的外角,∴∠BPG=∠B+∠BQP,同理:∠DPG=∠D+∠DQP,∴∠BPD=∠BPG+∠DPG=∠B+∠BQP+∠DQP+∠D=∠B+∠BQD+∠D;(3)如图d,∵∠DHM是△BFH的外角,∴∠DHM=∠B+∠F,同理:∠CMH=∠A+∠E,∴∠A+∠B+∠C+∠D+∠E+∠F=∠DHM+∠CMH+∠C+∠D=360°.【点评】此题是四边形的性质,主要考查了平行线的性质和判定,三角形的外角的性质,四边形的内角和,解本题的关键是作出辅助线,是一个比较简单也比较典型的中考常考题.23.如图1,已知线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:∠A+∠D=∠B+∠C;(2)如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.请直接利用(1)中的结论,完成下列各题:①仔细观察,在图2中“8字形”的个数:6个;②若∠D=40°,∠B=50°,试求∠P的度数;③若∠D和∠B为任意角,其他条件不变,试问∠P与∠D、∠B之间是否存在一定的数量关系?若存在,请写出推理过程;若不存在,请说明理由;④若∠D和∠B为任意角,,∠DAB和∠BCD的三等分线AP和CP相交于点P,且∠DAB=3∠2,∠DCB=3∠4,试问∠P与∠D、∠B之间是否存在一定的数量关系?若存在,请直接写出结论;若不存在,请说明理由.【答案】(1)∠A+∠D=∠B+∠C;(2)①6;②45°;③∠B+∠D=2∠P;④2∠B+∠D=3∠P.【分析】(1)利用三角形内角和定理及对顶角相等即可得出结论;(2)①分别找以交点M、O、N为顶点的能构成“8字形”的三角形;②利用“8字形”的数量关系结合角平分线即可得出∠P的度数;③和②同理;④利用“8字形”的数量关系结合“∠DAB=3∠2,∠DCB=3∠4即可得出结论.【解析】解:(1)∵∠A+∠D=180°﹣∠AOD,∠B+∠C=180°﹣∠COB,且∠AOD=∠COB,∴∠A+∠D=∠B+∠C;故答案为∠A+∠D=∠B+∠C;(2)①以M为交点的有1个,为△AMD和△CMP,以O为交点的有4个,为△AOD和△BOC,△AOD和△CON,△AOM和△BOC,△AOM和△CON,以N为交点的有1个,为△ANP和△BNC,故答案为6个;②∵AP平分∠DAB,CP平分∠BCD,∴2∠1=∠OAD,2∠3=∠OCB,由(1)中的结论得:∠1+∠D=∠3+∠P,2∠1+∠D=2∠3+∠B,整理得:∠B+∠D=2∠P,∴∠P=50°+40°2③:∠B+∠D=2∠P,理由如下:∵AP平分∠DAB,CP平分∠BCD,∴2∠1=∠OAD,2∠3=∠OCB,由(1)中的结论得:∠1+∠D=∠3+∠P,2∠1+∠D=2∠3+∠B,整理得:∠B+∠D=2∠P;④2∠B+∠D=3∠P,理由如下:由(1)中结论得:∠2+∠P=∠4+∠B,3∠2+∠D=3∠4+∠B,整理得:2∠B+∠D=3∠P.【点评】本题考查三角形内角和定理、角平分线的定义,解题关键是善于运用”8字形”的结论.24.阅读材料,回答下列问题:【材料提出】“八字型”是数学几何的常用模型,通常由一组对顶角所在的两个三角形构成.【探索研究】探索一:如图1,在八字型中,探索∠A、∠B、∠C、∠D之间的数量关系为∠A+∠B=∠C+∠D;探索二:如图2,若∠B=36°,∠D=14°,求∠P的度数为25°;探索三:如图3,CP、AG分别平分∠BCE、∠FAD,AG反向延长线交CP于点P,则∠P、∠B、∠D之间的数量关系为∠P=∠B+∠D2【模型应用】应用一:如图4,延长BM、CN,交于点A,在四边形MNCB中,设∠M=α,∠N=β,α+β>180°,四边形的内角∠MBC与外角∠NCD的角平分线BP,CP相交于点P,则∠A=α+β﹣180°(用含有α和β的代数式表示),∠P=α+β-180°2.(用含有α和β应用二:如图5,在四边形MNCB中,设∠M=α,∠N=β,α+β<180°,四边形的内角∠MBC与外角∠NCD的角平分线所在的直线相交于点P,∠P=180°-α-β2.(用含有α和β【拓展延伸】拓展一:如图6,若设∠C=x,∠B=y,∠CAP=13∠CAB,∠CDP=13∠CDB,试问∠P与∠C、∠B之间的数量关系为∠P=2x+y3.(用拓展二:如图7,AP平分∠BAD,CP平分∠BCD的邻补角∠BCE,猜想∠P与∠B、∠D的关系,直接写出结论2∠P﹣∠B﹣∠D=180°.【答案】探索一:∠A+∠B=∠C+∠D;探索二:25°;探索三:∠P=∠B+∠D应用一:α+β﹣180°,α+β-180°2应用二:180°-α-β2拓展一:∠P=2x+y拓展二:2∠P﹣∠B﹣∠D=180°.【分析】探索一:根据三角形的内角和定理,结合对顶角的性质可求解;探索二:根据角平分线的定义可得∠BAP=∠DAP,∠BCP=∠DCP,结合(1)的结论可得2∠P=∠B+∠D,再代入计算可求解;探索三:运用探索一和探索二的结论即可求得答案;应用一:如图4,延长BM、CN,交于点A,利用三角形内角和定理可得∠A=α+β﹣180°,再运用角平分线定义及三角形外角性质即可求得答案;应用二:如图5,延长MB、NC,交于点A,设T是CB的延长线上一点,R是BC延长线上一点,利用应用一的结论即可求得答案;拓展一:运用探索一的结论可得:∠P+∠PAB=∠B+∠PDB,∠P+∠CDP=∠C+∠CAP,∠B+∠CDB=∠C+∠CAB,再结合已知条

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论