版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省泰兴市黄桥教育联盟达标名校中考数学考试模拟冲刺卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,AB是定长线段,圆心O是AB的中点,AE、BF为切线,E、F为切点,满足AE=BF,在上取动点G,国点G作切线交AE、BF的延长线于点D、C,当点G运动时,设AD=y,BC=x,则y与x所满足的函数关系式为()A.正比例函数y=kx(k为常数,k≠0,x>0)B.一次函数y=kx+b(k,b为常数,kb≠0,x>0)C.反比例函数y=(k为常数,k≠0,x>0)D.二次函数y=ax2+bx+c(a,b,c为常数,a≠0,x>0)2.如图,把长方形纸片ABCD折叠,使顶点A与顶点C重合在一起,EF为折痕.若AB=9,BC=3,试求以折痕EF为边长的正方形面积()A.11 B.10 C.9 D.163.已知抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是(
)A.
B.
C.
D.4.如图,已知△ABC,△DCE,△FEG,△HGI是4个全等的等腰三角形,底边BC,CE,EG,GI在同一直线上,且AB=2,BC=1.连接AI,交FG于点Q,则QI=()A.1 B. C. D.5.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为(
)A.9人 B.10人 C.11人 D.12人6.如图,将一正方形纸片沿图(1)、(2)的虚线对折,得到图(3),然后沿图(3)中虚线的剪去一个角,展开得平面图形(4),则图(3)的虚线是()A. B. C. D.7.一元二次方程(x+2017)2=1的解为()A.﹣2016,﹣2018 B.﹣2016 C.﹣2018 D.﹣20178.如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°,四边形DEFG为矩形,DE=2cm,EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设Rt△ABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs.能反映ycm2与xs之间函数关系的大致图象是()A. B. C. D.9.下列四个多项式,能因式分解的是()A.a-1 B.a2+1C.x2-4y D.x2-6x+910.如图,矩形纸片中,,,将沿折叠,使点落在点处,交于点,则的长等于()A. B. C. D.11.如图,为了测量河对岸l1上两棵古树A、B之间的距离,某数学兴趣小组在河这边沿着与AB平行的直线l2上取C、D两点,测得∠ACB=15°,∠ACD=45°,若l1、l2之间的距离为50m,则A、B之间的距离为()A.50m B.25m C.(50﹣)m D.(50﹣25)m12.有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为()A.2 B.3 C.4 D.5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若一个多边形的每一个外角都等于40°,则这个多边形的内角和是_____.14.如图的三角形纸片中,,沿过点的直线折叠这个三角形,使点落在边上的点处,折痕为,则的周长为__________.15.如图,矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为____________.16.如图,在边长为3的正方形ABCD中,点E是BC边上的点,EC=2,∠AEP=90°,且EP交正方形外角的平分线CP于点P,则PC的长为_____.17.分解因式:(2a+b)2﹣(a+2b)2=.18.如果,那么的结果是______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是______;扇形统计图中的圆心角α等于______;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.20.(6分)为营造“安全出行”的良好交通氛围,实时监控道路交迸,某市交管部门在路口安装的高清摄像头如图所示,立杆MA与地面AB垂直,斜拉杆CD与AM交于点C,横杆DE∥AB,摄像头EF⊥DE于点E,AC=55米,CD=3米,EF=0.4米,∠CDE=162°.求∠MCD的度数;求摄像头下端点F到地面AB的距离.(精确到百分位)21.(6分)解分式方程:x+1x-1-22.(8分)如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.求证:CG是⊙O的切线.求证:AF=CF.若sinG=0.6,CF=4,求GA的长.23.(8分)如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,OA=5,AB与⊙O相切于点B,BP的延长线交直线l于点C.(1)求证:AB=AC;(2)若,求⊙O的半径.24.(10分)如图,已知点D在反比例函数y=的图象上,过点D作x轴的平行线交y轴于点B(0,3).过点A(5,0)的直线y=kx+b与y轴于点C,且BD=OC,tan∠OAC=.(1)求反比例函数y=和直线y=kx+b的解析式;(2)连接CD,试判断线段AC与线段CD的关系,并说明理由;(3)点E为x轴上点A右侧的一点,且AE=OC,连接BE交直线CA与点M,求∠BMC的度数.25.(10分)如图,△ABC和△BEC均为等腰直角三角形,且∠ACB=∠BEC=90°,AC=4,点P为线段BE延长线上一点,连接CP以CP为直角边向下作等腰直角△CPD,线段BE与CD相交于点F.(1)求证:;(2)连接BD,请你判断AC与BD有什么位置关系?并说明理由;(3)若PE=1,求△PBD的面积.26.(12分)如图,在矩形ABCD的外侧,作等边三角形ADE,连结BE,CE,求证:BE=CE.27.(12分)如图,在Rt△ABC中,∠C=90°,AB的垂直平分线交AC于点D,交AB于点E.(1)求证:△ADE~△ABC;(2)当AC=8,BC=6时,求DE的长.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解题分析】
延长AD,BC交于点Q,连接OE,OF,OD,OC,OQ,由AE与BF为圆的切线,利用切线的性质得到AE与EO垂直,BF与OF垂直,由AE=BF,OE=OF,利用HL得到直角三角形AOE与直角BOF全等,利用全等三角形的对应角相等得到∠A=∠B,利用等角对等边可得出三角形QAB为等腰三角形,由O为底边AB的中点,利用三线合一得到QO垂直于AB,得到一对直角相等,再由∠FQO与∠OQB为公共角,利用两对对应角相等的两三角形相似得到三角形FQO与三角形OQB相似,同理得到三角形EQO与三角形OAQ相似,由相似三角形的对应角相等得到∠QOE=∠QOF=∠A=∠B,再由切线长定理得到OD与OC分别为∠EOG与∠FOG的平分线,得到∠DOC为∠EOF的一半,即∠DOC=∠A=∠B,又∠GCO=∠FCO,得到三角形DOC与三角形OBC相似,同理三角形DOC与三角形DAO相似,进而确定出三角形OBC与三角形DAO相似,由相似得比例,将AD=x,BC=y代入,并将AO与OB换为AB的一半,可得出x与y的乘积为定值,即y与x成反比例函数,即可得到正确的选项.【题目详解】延长AD,BC交于点Q,连接OE,OF,OD,OC,OQ,∵AE,BF为圆O的切线,∴OE⊥AE,OF⊥FB,∴∠AEO=∠BFO=90°,在Rt△AEO和Rt△BFO中,∵,∴Rt△AEO≌Rt△BFO(HL),∴∠A=∠B,∴△QAB为等腰三角形,又∵O为AB的中点,即AO=BO,∴QO⊥AB,∴∠QOB=∠QFO=90°,又∵∠OQF=∠BQO,∴△QOF∽△QBO,∴∠B=∠QOF,同理可以得到∠A=∠QOE,∴∠QOF=∠QOE,根据切线长定理得:OD平分∠EOG,OC平分∠GOF,∴∠DOC=∠EOF=∠A=∠B,又∵∠GCO=∠FCO,∴△DOC∽△OBC,同理可以得到△DOC∽△DAO,∴△DAO∽△OBC,∴,∴AD•BC=AO•OB=AB2,即xy=AB2为定值,设k=AB2,得到y=,则y与x满足的函数关系式为反比例函数y=(k为常数,k≠0,x>0).故选C.【题目点拨】本题属于圆的综合题,涉及的知识有:相似三角形的判定与性质,切线长定理,直角三角形全等的判定与性质,反比例函数的性质,以及等腰三角形的性质,做此题是注意灵活运用所学知识.2、B【解题分析】
根据矩形和折叠性质可得△EHC≌△FBC,从而可得BF=HE=DE,设BF=EH=DE=x,则AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得BF=DE=AG=4,据此得出GF=1,由EF2=EG2+GF2可得答案.【题目详解】如图,∵四边形ABCD是矩形,∴AD=BC,∠D=∠B=90°,根据折叠的性质,有HC=AD,∠H=∠D,HE=DE,∴HC=BC,∠H=∠B,又∠HCE+∠ECF=90°,∠BCF+∠ECF=90°,∴∠HCE=∠BCF,在△EHC和△FBC中,∵,∴△EHC≌△FBC,∴BF=HE,∴BF=HE=DE,设BF=EH=DE=x,则AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得x2+32=(9﹣x)2,解得:x=4,即DE=EH=BF=4,则AG=DE=EH=BF=4,∴GF=AB﹣AG﹣BF=9﹣4﹣4=1,∴EF2=EG2+GF2=32+12=10,故选B.【题目点拨】本题考查了折叠的性质、矩形的性质、三角形全等的判定与性质、勾股定理等,综合性较强,熟练掌握各相关的性质定理与判定定理是解题的关键.3、B【解题分析】分析:根据抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,可得b>0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac的图象.详解:∵抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,∴b>0,∵交点横坐标为1,∴a+b+c=b,∴a+c=0,∴ac<0,∴一次函数y=bx+ac的图象经过第一、三、四象限.故选B.点睛:考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b>0,ac<0.4、D【解题分析】解:∵△ABC、△DCE、△FEG是三个全等的等腰三角形,∴HI=AB=2,GI=BC=1,BI=2BC=2,∴===,∴=.∵∠ABI=∠ABC,∴△ABI∽△CBA,∴=.∵AB=AC,∴AI=BI=2.∵∠ACB=∠FGE,∴AC∥FG,∴==,∴QI=AI=.故选D.点睛:本题主要考查了平行线分线段定理,以及三角形相似的判定,正确理解AB∥CD∥EF,AC∥DE∥FG是解题的关键.5、C【解题分析】
设参加酒会的人数为x人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【题目详解】设参加酒会的人数为x人,依题可得:
x(x-1)=55,
化简得:x2-x-110=0,
解得:x1=11,x2=-10(舍去),
故答案为C.【题目点拨】考查了一元二次方程的应用,解题的关键是根据题中的等量关系列出方程.6、D【解题分析】
本题关键是正确分析出所剪时的虚线与正方形纸片的边平行.【题目详解】要想得到平面图形(4),需要注意(4)中内部的矩形与原来的正方形纸片的边平行,故剪时,虚线也与正方形纸片的边平行,所以D是正确答案,故本题正确答案为D选项.【题目点拨】本题考查了平面图形在实际生活中的应用,有良好的空间想象能力过动手能力是解题关键.7、A【解题分析】
利用直接开平方法解方程.【题目详解】(x+2017)2=1x+2017=±1,所以x1=-2018,x2=-1.故选A.【题目点拨】本题考查了解一元二次方程-直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.8、A【解题分析】∵∠C=90°,BC=2cm,∠A=30°,∴AB=4,由勾股定理得:AC=2,∵四边形DEFG为矩形,∠C=90,∴DE=GF=2,∠C=∠DEF=90°,∴AC∥DE,此题有三种情况:(1)当0<x<2时,AB交DE于H,如图∵DE∥AC,∴,即,解得:EH=x,所以y=•x•x=x2,∵x、y之间是二次函数,所以所选答案C错误,答案D错误,∵a=>0,开口向上;(2)当2≤x≤6时,如图,此时y=×2×2=2,(3)当6<x≤8时,如图,设△ABC的面积是s1,△FNB的面积是s2,BF=x﹣6,与(1)类同,同法可求FN=X﹣6,∴y=s1﹣s2,=×2×2﹣×(x﹣6)×(X﹣6),=﹣x2+6x﹣16,∵﹣<0,∴开口向下,所以答案A正确,答案B错误,故选A.点睛:本题考查函数的图象.在运动的过程中正确区分函数图象是解题的关键.9、D【解题分析】试题分析:利用平方差公式及完全平方公式的结构特征判断即可.试题解析:x2-6x+9=(x-3)2.故选D.考点:2.因式分解-运用公式法;2.因式分解-提公因式法.10、B【解题分析】
由折叠的性质得到AE=AB,∠E=∠B=90°,易证Rt△AEF≌Rt△CDF,即可得到结论EF=DF;易得FC=FA,设FA=x,则FC=x,FD=6-x,在Rt△CDF中利用勾股定理得到关于x的方程x2=42+(6-x)2,解方程求出x即可.【题目详解】∵矩形ABCD沿对角线AC对折,使△ABC落在△ACE的位置,
∴AE=AB,∠E=∠B=90°,
又∵四边形ABCD为矩形,
∴AB=CD,
∴AE=DC,
而∠AFE=∠DFC,
∵在△AEF与△CDF中,,∴△AEF≌△CDF(AAS),
∴EF=DF;
∵四边形ABCD为矩形,
∴AD=BC=6,CD=AB=4,
∵Rt△AEF≌Rt△CDF,
∴FC=FA,
设FA=x,则FC=x,FD=6-x,
在Rt△CDF中,CF2=CD2+DF2,即x2=42+(6-x)2,解得x=,则FD=6-x=.故选B.【题目点拨】考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了矩形的性质和三角形全等的判定与性质以及勾股定理.11、C【解题分析】
如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.则AM=BN.通过解直角△ACM和△BCN分别求得CM、CN的长度,则易得AB=MN=CM﹣CN,即可得到结论.【题目详解】如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.则AB=MN,AM=BN.在直角△ACM中,∵∠ACM=45°,AM=50m,∴CM=AM=50m.在直角△BCN中,∵∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN=(m),∴MN=CM﹣CN=50﹣(m).则AB=MN=(50﹣)m.故选C.【题目点拨】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.12、C【解题分析】若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,即一共添加4个小正方体,故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、【解题分析】
根据任何多边形的外角和都是360度,先利用360°÷40°求出多边形的边数,再根据多边形的内角和公式(n-2)•180°计算即可求解.【题目详解】解:多边形的边数是:360°÷40°=9,
则内角和是:(9-2)•180°=1260°.
故答案为1260°.【题目点拨】本题考查正多边形的外角与边数的关系,求出多边形的边数是解题的关键.14、【解题分析】
由折叠的性质,可知:BE=BC,DE=DC,通过等量代换,即可得到答案.【题目详解】∵沿过点的直线折叠这个三角形,使点落在边上的点处,折痕为,∴BE=BC,DE=DC,∴的周长=AD+DE+AE=AD+DC+AE=AC+AE=AB+BC+AC-BC-BE=8+6+5-6-6=7cm,故答案是:【题目点拨】本题主要考查折叠的性质,根据三角形的周长定义,进行等量代换是解题的关键.15、【解题分析】试题解析:∵四边形ABCD是矩形,
∴OB=OD,OA=OC,AC=BD,
∴OA=OB,
∵AE垂直平分OB,
∴AB=AO,
∴OA=AB=OB=3,
∴BD=2OB=6,
∴AD=.【题目点拨】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.16、【解题分析】
在AB上取BN=BE,连接EN,根据已知及正方形的性质利用ASA判定△ANE≌△ECP,从而得到NE=CP,在等腰直角三角形BNE中,由勾股定理即可解决问题.【题目详解】在AB上取BN=BE,连接EN,作PM⊥BC于M.∵四边形ABCD是正方形,∴AB=BC,∠B=∠DCB=∠DCM=90°.∵BE=BN,∠B=90°,∴∠BNE=45°,∠ANE=135°.∵PC平分∠DCM,∴∠PCM=45°,∴∠ECP=135°.∵AB=BC,BN=BE,∴AN=EC.∵∠AEP=90°,∴∠AEB+∠PEC=90°.∵∠AEB+∠NAE=90°,∴∠NAE=∠PEC,∴△ANE≌△ECP(ASA),∴NE=CP.∵BC=3,EC=2,∴NB=BE=1,∴NE==,∴PC=.故答案为:.【题目点拨】本题考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.17、3(a+b)(a﹣b).【解题分析】(2a+b)2﹣(a+2b)2=4a2+4ab+b2-(a2+4ab+4b2)=4a2+4ab+b2-a2-4ab-4b2=3a2-3b2=3(a2-b2)=3(a+b)(a-b)18、1【解题分析】
令k,则a=2k,b=3k,代入到原式化简的结果计算即可.【题目详解】令k,则a=2k,b=3k,∴原式=1.故答案为:1.【题目点拨】本题考查了约分,解题的关键是掌握约分的定义:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)30;;(2).【解题分析】试题分析:(1)根据题意列式求值,根据相应数据画图即可;(2)根据题意列表,然后根据表中数据求出概率即可.解:(1)6÷20%=30,(30﹣3﹣7﹣6﹣2)÷30×360=12÷30×26=144°,答:本次抽取的学生人数是30人;扇形统计图中的圆心角α等于144°;故答案为30,144°;补全统计图如图所示:(2)根据题意列表如下:设竖列为小红抽取的跑道,横排为小花抽取的跑道,记小红和小花抽在相邻两道这个事件为A,∴.考点:列表法与树状图法;扇形统计图;利用频率估计概率.20、(1)(2)6.03米【解题分析】
分析:延长ED,AM交于点P,由∠CDE=162°及三角形外角的性质可得出结果;(2)利用解直角三角形求出PC,再利用PC+AC-EF即可得解.详解:(1)如图,延长ED,AM交于点P,∵DE∥AB,∴,即∠MPD=90°∵∠CDE=162°∴(2)如图,在Rt△PCD中,CD=3米,∴PC=米∵AC=5.5米,EF=0.4米,∴米答:摄像头下端点F到地面AB的距离为6.03米.点睛:本题考查了解直角三角形的应用,解决此类问题要了解角之间的关系,找到已知和未知相关联的的直角三角形,当图形中没有直角三角形时,要通过作高线或垂线构造直角三角形.21、方程无解【解题分析】
找出分式方程的最简公分母,去分母后转化为整式方程,求出整式方程的解得到x的值,再代入最简公分母进行检验即可.【题目详解】解:方程的两边同乘(x+1)(x−1),得:x+12x2x2∴此方程无解【题目点拨】本题主要考查了解分式方程,解分式方程的步骤:①去分母;②解整式方程;③验根.22、(1)见解析;(2)见解析;(3)AG=1.【解题分析】
(1)利用垂径定理、平行的性质,得出OC⊥CG,得证CG是⊙O的切线.(2)利用直径所对圆周角为和垂直的条件得出∠2=∠B,再根据等弧所对的圆周角相等得出∠1=∠B,进而证得∠1=∠2,得证AF=CF.(3)根据直角三角形的性质,求出AD的长度,再利用平行的性质计算出结果.【题目详解】(1)证明:连结OC,如图,∵C是劣弧AE的中点,∴OC⊥AE,∵CG∥AE,∴CG⊥OC,∴CG是⊙O的切线;(2)证明:连结AC、BC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠2+∠BCD=90°,而CD⊥AB,∴∠B+∠BCD=90°,∴∠B=∠2,∵C是劣弧AE的中点,∴,∴∠1=∠B,∴∠1=∠2,∴AF=CF;(3)解:∵CG∥AE,∴∠FAD=∠G,∵sinG=0.6,∴sin∠FAD==0.6,∵∠CDA=90°,AF=CF=4,∴DF=2.4,∴AD=3.2,∴CD=CF+DF=6.4,∵AF∥CG,∴,∴∴DG=,∴AG=DG﹣AD=1.【题目点拨】本题主要考查与圆有关的位置关系和圆中的计算问题,掌握切线的判定定理以及解直角三角形是解题的关键.23、(1)证明见解析;(2)1.【解题分析】
(1)由同圆半径相等和对顶角相等得∠OBP=∠APC,由圆的切线性质和垂直得∠ABP+∠OBP=90°和∠ACB+∠APC=90°,则∠ABP=∠ACB,根据等角对等边得AB=AC;(2)设⊙O的半径为r,分别在Rt△AOB和Rt△ACP中根据勾股定理列等式,并根据AB=AC得52﹣r2=(2)2﹣(5﹣r)2,求出r的值即可.【题目详解】解:(1)连接OB,∵OB=OP,∴∠OPB=∠OBP,∵∠OPB=∠APC,∴∠OBP=∠APC,∵AB与⊙O相切于点B,∴OB⊥AB,∴∠ABO=90°,∴∠ABP+∠OBP=90°,∵OA⊥AC,∴∠OAC=90°,∴∠ACB+∠APC=90°,∴∠ABP=∠ACB,∴AB=AC;(2)设⊙O的半径为r,在Rt△AOB中,AB2=OA2﹣OB2=52﹣r2,在Rt△ACP中,AC2=PC2﹣PA2,AC2=(2)2﹣(5﹣r)2,∵AB=AC,∴52﹣r2=(2)2﹣(5﹣r)2,解得:r=1,则⊙O的半径为1.【题目点拨】本题考查了圆的切线的性质,圆的切线垂直于经过切点的半径;并利用勾股定理列等式,求圆的半径;此类题的一般做法是:若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系;简记作:见切点,连半径,见垂直.24、(1),(2)AC⊥CD(3)∠BMC=41°【解题分析】分析:(1)由A点坐标可求得OA的长,再利用三角函数的定义可求得OC的长,可求得C、D点坐标,再利用待定系数法可求得直线AC的解析式;(2)由条件可证明△OAC≌△BCD,再由角的和差可求得∠OAC+∠BCA=90°,可证得AC⊥CD;(3)连接AD,可证得四边形AEBD为平行四边形,可得出△ACD为等腰直角三角形,则可求得答案.本题解析:(1)∵A(1,0),∴OA=1.∵tan∠OAC=,∴,解得OC=2,∴C(0,﹣2),∴BD=OC=2,∵B(0,3),BD∥x轴,∴D(﹣2,3),∴m=﹣2×3=﹣6,∴y=﹣,设直线AC关系式为y=kx+b,∵过A(1,0),C(0,﹣2),∴,解得,∴y=x﹣2;(2)∵B(0,3),C(0,﹣2),∴BC=1=OA,在△OAC和△BCD中,∴△OAC≌△BCD(SAS),∴AC=CD,∴∠OAC=∠BCD,∴∠BCD+∠BCA=∠OAC+∠BCA=90°,∴AC⊥CD;(3)∠BMC=41°.如图,连接AD,∵AE=OC,BD=OC,AE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 铁丝网护栏施工方案
- 蓬溪专业市政清淤施工方案
- 文昌防静电砂浆施工方案
- 山西镀锌饲料塔施工方案
- 阳台土豆打顶施工方案
- 疫情施工方案
- 铜仁混凝土化粪池施工方案
- 石狮硬化地坪施工方案
- 金昌石材裂缝修补施工方案
- 长宁区空调消毒施工方案
- 人教部编版七年级语文上册《阅读综合实践》示范课教学设计
- (正式版)QC∕T 1206.1-2024 电动汽车动力蓄电池热管理系统 第1部分:通 用要求
- 《煤矿地质工作细则》矿安﹝2024﹞192号
- 平面向量及其应用试题及答案
- 消防控制室值班服务人员培训方案
- 《贵州旅游介绍》课件2
- 2024年中职单招(护理)专业综合知识考试题库(含答案)
- 无人机应用平台实施方案
- 挪用公款还款协议书范本
- 事业单位工作人员年度考核登记表(医生个人总结)
- 盾构隧道施工数字化与智能化系统集成
评论
0/150
提交评论