




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省无锡市宜兴市宜城环科园教联盟八年级数学第一学期期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列图形中,具有稳定性的是()A.正方形 B.长方形 C.三角形 D.平行四边形2.如图,△ABC中∠ACB=90°,CD是AB边上的高,∠BAC的角平分线AF交CD于E,则△CEF必为()A.等腰三角形 B.等边三角形 C.直角三角形 D.等腰直角三角形3.如图,点C在AD上,CA=CB,∠A=20°,则∠BCD=()A.20° B.40° C.50° D.140°4.在平面直角坐标系中,点(2,﹣4)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.在平行四边形中,、的度数之比为,则的度数为()A. B. C. D.6.下列各组值中,不是方程的解的是()A. B. C. D.7.若在实数范围内有意义,则x满足的条件是()A.x≥ B.x≤ C.x= D.x≠8.将一次函数(为常数)的图像位于轴下方的部分沿轴翻折到轴上方,和一次函数(为常数)的图像位于轴及上方的部分组成“”型折线,过点作轴的平行线,若该“”型折线在直线下方的点的横坐标满足,则的取值范围是()A. B. C. D.9.下列图形中是轴对称图形的个数是()A.4个 B.3个 C.2个 D.1个10.班上数学兴趣小组的同学在元旦时,互赠新年贺卡,每两个同学都相互赠送一张,小明统计出全组共互送了90张贺年卡,那么数学兴趣小组的人数是多少?设数学兴趣小组人数为x人,则可列方程为()A.x(x-1)=90 B.x(x-1)=2×90 C.x(x-1)=90÷2 D.x(x+1)=9011.已知是一个完全平方式,则等于()A.8 B. C. D.12.如图,在△ABC中,∠A=60度,点D,E分别在AB,AC上,则∠1+∠2的大小为()度.A.140 B.190 C.320 D.240二、填空题(每题4分,共24分)13.诺如病毒的直径大约0.0000005米,将0.0000005用科学记数法可表示为________14.如图,△ABC中,AB=AC,BC=5,,AD⊥BC于点D,EF垂直平分AB,交AC于点F,在EF上确定一点P,使PB+PD最小,最这个最小值为_______________15.科学家测得肥皂泡的厚度约为0.0000007米,0.0000007用科学记数法表示为__________.16.若,,则______.17.已知点,点关于轴对称,点在第___________象限.18.小李家离某书店6千米,他从家中出发步行到该书店,返回时由于步行速度比去时每小时慢了1千米,结果返回时多用了半小时.如果设小李去书店时的速度为每小时x千米,那么列出的方程是__________.三、解答题(共78分)19.(8分)利用乘法公式计算:20.(8分)已知一次函数的解析式为,求出关于轴对称的函数解析式.21.(8分)某班级组织学生参加研学活动,计划租用一辆客车,租金为1000元,乘车费用进行均摊.出发前部分学生因有事不能参加,实际参加的人数是原计划的,结果每名学生比原计划多付5元车费,实际有多少名学生参加了研学活动?22.(10分)如图,在△ABC中,D是BC边上的一点,AB=DB,BE平分∠ABC,交AC边于点E,连接DE.(1)求证:AE=DE;(2)若∠A=100°,∠C=50°,求∠AEB的度数.23.(10分)某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上哪种购买方案?24.(10分)某校八年级举行数学趣味竞赛,购买A,B两种笔记本作为奖品,这两种笔记本的单价分别是12元和8元.根据比赛设奖情况,需购买两种笔记本共30本,并且购买A笔记本的数量要少于B笔记本数量的,但又不少于B笔记本数量的.(1)求A笔记本数量的取值范围;(2)购买这两种笔记本各多少本时,所需费用最省?最省费用是多少元?25.(12分)如图,在中,,为上一点,,于点,于点,相交于点.(1)求证:;(2)若,求的长.26.如图所示,四边形是正方形,是延长线上一点.直角三角尺的一条直角边经过点,且直角顶点在边上滑动(点不与点重合),另一直角边与的平分线相交于点.(1)求证:;(2)如图(1),当点在边的中点位置时,猜想与的数量关系,并证明你的猜想;(3)如图(2),当点在边(除两端点)上的任意位置时,猜想此时与有怎样的数量关系,并证明你的猜想.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据三角形具有稳定性解答.【详解】解:三角形,正方形,平行四边形,长方形中只有三角形具有稳定性.
故选C.【点睛】本题考查了三角形的稳定性,熟练掌握三角形的稳定性是解题的关键.2、A【解析】首先根据条件∠ACB=90°,CD是AB边上的高,可证出∠BCD+∠ACD=90°,∠B+∠BCD=90°,再根据同角的补角相等可得到∠B=∠DCA,再利用三角形的外角与内角的关系可得到∠CFE=∠FEC,最后利用等角对等边可证出结论.【详解】∵∠ACB=90°,∴∠BCD+∠ACD=90°,∵CD是AB边上的高,∴∠B+∠BCD=90°,∴∠B=∠DCA,∵AF是∠BAC的平分线,∴∠1=∠2,∵∠1+∠B=∠CFE,∠2+∠DCA=∠FEC,∴∠CFE=∠FEC,∴CF=CE,∴△CEF是等腰三角形.故选A【点睛】此题考查等腰三角形的判定,解题关键在于掌握判定定理.3、B【详解】解:∵CA=CB,∠A=20°,∴∠A=∠B=20°,∴∠BCD=∠A+∠B=20°+20°=40°.故选B.4、D【分析】根据点的横纵坐标的符号可得所在象限.【详解】解:∵点的横坐标为正,纵坐标为负,∴该点在第四象限.故选:D.【点睛】本题考查平面直角坐标系的知识;用到的知识点为:横坐标为正,纵坐标为负的点在第四象限.5、A【分析】由四边形ABCD为平行四边形,可知∠A+∠B=180°,∠A=∠C,依据可求得∠A的度数,即可求得∠C的度数.【详解】解:∵四边形ABCD为平行四边形,
∴∠A+∠B=180°,∠A=∠C,
∵,
∴∴,
故选:A.【点睛】本题主要考查平行四边形的性质:(1)邻角互补;(2)平行四边形的两组对角分别相等.6、B【分析】将x、y的值分别代入x-2y中,看结果是否等于1,判断x、y的值是否为方程x-2y=1的解.【详解】A项,当,时,,所以是方程的解;B项,当,时,,所以不是方程的解;C项,当,时,,所以是方程的解;D项,当,时,,所以是方程的解,故选B.【点睛】本题考查二元一次方程的解的定义,要求理解什么是二元一次方程的解,并会把x,y的值代入原方程验证二元一次方程的解.7、C【解析】由题意可知:,解得:x=,故选C.【点睛】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.8、A【分析】先解不等式3x+b<1时,得x<;再求出函数y=3x+b沿x轴翻折后的解析式为y=-3x-b,解不等式-3x-b<1,得x>-;根据x满足0<x<3,得出-=0,=3,进而求出b的取值范围.【详解】∵y=3x+b,∴当y<1时,3x+b<1,解得x<;∵函数y=3x+b沿x轴翻折后的解析式为-y=3x+b,即y=-3x-b,∴当y<1时,-3x-b<1,解得x>-;∴-<x<,∵x满足0<x<3,∴-=0,=3,∴b=-1,b=-8,∴b的取值范围为-8≤b≤-1.故选:A.【点睛】本题考查了一次函数图象与几何变换,求出函数y=2x+b沿x轴翻折后的解析式是解题的关键.9、C【解析】根据轴对称图形的概念解答即可.【详解】第一个图形是轴对称图形,第二个图形不是轴对称图形,第三个图形不是轴对称图形,第四个图形是轴对称图形,第五个图形不是轴对称图形.综上所述:是轴对称图形的是第一、四共2个图形.故选C.【点睛】本题考查了中对称图形以及轴对称图形,掌握中心对称图形与轴对称图形的概念是解决此类问题的关键.10、A【分析】如果设数学兴趣小组人数为x人,每名学生送了(x﹣1)张,共有x人,则一共送了x(x﹣1)张,再根据“共互送了1张贺年卡”,可得出方程为x(x﹣1)=1.【详解】设数学兴趣小组人数为x人,每名学生送了(x﹣1)张,共有x人,根据“共互送了1张贺年卡”,可得出方程为x(x﹣1)=1.故选A.【点睛】本题考查了一元二次方程的应用.解题的关键是读清题意,找准数量关系,列出方程.11、C【分析】本题考查的是完全平方公式的应用,首尾是a和8b的平方,所以中间项应为a和8b的乘积的2倍.【详解】∵a2-N×ab+64b2是一个完全平方式,
∴这两个数是a和8b,
∴Nab=±1ab,
解得N=±1.
故选:C.【点睛】此题考查完全平方公式的结构特征,两数的平方和加上或减去它们乘积的2倍,根据平方项确定出这两个数是求解的关键.12、D【解析】分析:根据三角形的外角性质可得∠1=∠A+∠ADE,∠2=∠A+∠AED,再根据已知和三角形内角和等于180°即可求解.详解:∵∠1=∠A+∠ADE,∠2=∠A+∠AED∴∠1+∠2=∠A+∠ADE+∠A+∠AED=∠A+(∠ADE+∠A+∠AED)=60°+180°=240°故选D.点睛:本题考查了三角形的外角性质和三角形内角和定理:三角形内角和等于180°,三角形的外角等于和它不相邻的两个内角的和.二、填空题(每题4分,共24分)13、5×10-7【解析】试题解析:0.0000005=5×10-714、1【分析】根据三角形的面积公式即可得到AD=1,由EF垂直平分AB,得到点A,B关于EF对称,于是得到AD的长度=PB+PD的最小值,即可得到结论.【详解】解:∵AB=AC,BC=5,S△ABC=15,AD⊥BC于点D,∴AD=1,∵EF垂直平分AB,∴点P到A,B两点的距离相等,∴AD的长度=PB+PD的最小值,即PB+PD的最小值为1,故答案为:1.【点睛】本题考查了轴对称——最短路线问题,线段的垂直平分线的性质,等腰三角形的性质的运用,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.15、7×【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000
000
7=7×.
故答案为:7×.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.16、1【解析】将原式展开可得,代入求值即可.【详解】当,时,.故答案为:.【点睛】此题考查了完全平方公式,熟练掌握公式是解题的关键.17、四【分析】关于x轴对称,则横坐标相等,纵坐标互为相反数,求出a,b的值即可.【详解】已知点,点关于轴对称,则,解得,则点在第四象限.【点睛】本题是对坐标关于x轴对称的考查,熟练掌握二元一次方程组是解决本题的关键.18、【解析】设小李去书店时的速度为每小时x千米,根据题意得:,故答案为:.三、解答题(共78分)19、【分析】根据乘法分配律的逆运算进行计算,即可得到答案.【详解】解:===;【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握运算法则进行解题.20、y=-2x-1【分析】求出与x轴、y轴的交点坐标,得到关于y轴对称点的坐标,即可求出过此两点的函数解析式.【详解】令中y=0,得x=;x=0,得y=-1,∴与x轴交点为(,0),与y轴交点为(0,-1),设关于y轴对称的函数解析式为y=kx+b,过点(-,0)、(0,-1),∴,解得,∴关于轴对称的函数解析式为y=-2x-1.【点睛】此题考查待定系数法求函数解析式,题中求出原函数解析式与坐标轴的交点,得到关于y轴对称点的坐标是解题的关键.21、实际有40名学生参加了研学活动【分析】设计划有名学生参加研学活动,根据题意列出分式方程即可求解.【详解】解:设计划有名学生参加研学活动,由题意得.解得,.经检验,是原方程的解.所以,.答:实际有40名学生参加了研学活动.【点睛】此题主要考查分式方程的应用,解题的关键是根据题意找到等量关系列出分式方程.22、(1)见解析;(2)65°【分析】(1)根据BE平分∠ABC,可以得到∠ABE=∠DBE,然后根据题目中的条件即可证明△ABE和△DBE全等,从而可以得到结论成立;(2)根据三角形内角和求出∠ABC=30°,根据角平分线的定义求出∠CBE=15°,,然后根据外角的性质可以得到∠AEB的度数.【详解】(1)证明:∵BE平分∠ABC,∴∠ABE=∠DBE,在△ABE和△DBE中,,∴△ABE≌△DBE(SAS),∴AE=DE;(2)∵∠A=100°,∠C=50°,∴∠ABC=30°,∵BE平分∠ABC,∴∠ABE=∠DBE,∴∠CBE=15°,∴∠AEB=∠C+∠CBE=50°+15°=65°.【点睛】本题考查全等三角形的判定与性质、角平分线的定义,以及三角形外角的性质,解答本题的关键是明确题意,利用全等三角形的判定和性质解答.23、(1)有三种购买方案,理由见解析;(2)为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车【分析】设要购买轿车x辆,则要购买面包车(10-x)辆,题中要求“轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元”列出不等式,然后解出x的取值范围,最后根据x的值列出不同方案.【详解】(1)设购买轿车x辆,那么购买面包车(10-x)辆.由题意,得7x+4(10-x)≤55,解得x≤5.又因为x≥3,所以x的值为3,4,5,所以有三种购买方案:方案一:购买3辆轿车,7辆面包车;方案二:购买4辆轿车,6辆面包车;方案三:购买5辆轿车,5辆面包车.(2)方案一的日租金为3×200+7×110=1370(元)<1500元;方案二的日租金为4×200+6×110=1460(元)<1500元;方案三的日租金为5×200+5×110=1550(元)>1500元.所以为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车.【点睛】本题主要考查对于一元一次不等式组的应用,要注意找好题中的不等关系.解题的关键是:(1)根据数量关系列出关于x的一元一次不等式;(2)求出三种购买方案的日租金24、(1),且x为整数;(2)6,24,1.【分析】(1)设A种笔记本购买x本,根据题意列出不等式组,解不等式组(2)设购买总费用为y元,列出y与x的方程式,再根据X的取值范围来得出y的最小值【详解】(1)设A种笔记本购买x本∵∴,且x为整数(2)设购买总费用为y元∴y=12x+8(30-x)=4x+240∵y随x减小而减小,∴当x=6时,y=1答:当购买A笔记本6本,B笔记本24本时,最省费用1元【点睛】本题属
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏省苏州市同里中学2024-2025学年初三年级第一次模拟考试(二)数学试题含解析
- 江苏省四校联考2025届高三第二学期月考(三)英语试题含解析
- 家具定制交易合同
- 版个人房屋建设承包协议案例
- 铝门采购合同
- 2《让家更美好》表格式公开课一等奖创新教学设计 统编版七年级上册道德与法治
- 建筑项目劳动力计划和主要设备供应计划
- 人教部编版二年级上册课文4口语交际:商量教案设计
- 经管营销多维-广东溢达-问题分析与解决培训核心片段记录-1021-22
- 八年级数学下册 第20章 数据的初步分析20.2 数据的集中趋势与离散程度 1数据的集中趋势第2课时 中位数与众数教学设计 (新版)沪科版
- MOOC 创业基础-暨南大学 中国大学慕课答案
- 24小时值班和领导带班制度
- GB∕T 17602-2018 工业己烷-行业标准
- GB 38454-2019 坠落防护 水平生命线装置
- 水资源论证工作大纲
- 中考物理命题培训讲座
- 生产安全事故风险评估报告(参考模板)
- 125万吨硫铁矿斜坡道施工组织设计
- 毕业设计10层框架—剪力墙结构体系设计计算书
- 赛英公司FOD监测雷达系统
- 固体制剂车间主要过程控制点
评论
0/150
提交评论